Project description:Implantation is the attachment of embryo in the endometrium. Failure in implantation is a major cause of early pregnancy loss. During implantation, the temporal uterine lumen closure can help embryo attach to the uterus. In pigs, extending of endometrial folds to form interlocking finger-like projections is a main cause leads to uterine lumen closure during attachment time, but the underlying mechanisms are largely unknown. Our data reveal that pig uterine luminal epithelium (LE) migrate in coordinated groups during extending of endometrial folds. Moreover, the MALDI-TOF MS based N-glycomic characterization of porcine endometrium revealed α2,6-linked sialic acid are highly expressed in pig uterine LE during extending of endometrial folds. To investigated the mechanisms by which α2,6-sialylated proteins in formation of the endometrial folding during implantation in pigs, the α2,6-sialylated proteins in pig uterine LE were characterized by proteomic analysis and those proteins that are involved in cell adhesion, such as E-cadherin, were detected. Finally, our in vivo and in vitro data show that α2,6-sialylation of E-cadherin occurs in accompany with collective epithelial migration. The results provide new insight into the mechanism of pig implantation by identifying that α2,6-sialylation of cell adhesion molecules may participate in formation of extending of endometrial folds through promoting of collective migration of uterine LE.
Project description:Large White and Meishan pigs were either non-treated or injected with mammalian 1-24 ACTH (Immediate Synachten, Novartis France) at the dose of 250 µg per animal. Pigs were sacrificed either immediately after capture from their home cage (non-treated animals) or 1 hour following ACTH injection. Adrenal glands were immediately collected from pigs and frozen on dry ice and then stored at -80°C until RNA isolation. Keywords: stress response, adrenal, gene expression, pig
Project description:Large White and Meishan pigs were either non-treated or injected with mammalian 1-24 ACTH (Immediate Synachten, Novartis France) at the dose of 250 µg per animal. Pigs were sacrificed either immediately after capture from their home cage (non-treated animals) or 1 hour following ACTH injection. Adrenal glands were immediately collected from pigs and frozen on dry ice and then stored at -80°C until RNA isolation. Keywords: stress response, adrenal, gene expression, pig 47 samples
Project description:Maternal exposure to estrogens can induce long-term adverse effects in the offspring. This may be mediated through alterations in the endometrium affecting embryo-maternal communication as early as the preimplantational phase. Thus, we analyzed the effects of gestational estradiol-17β (E2) exposure on the endometrium. Two distinct low doses and a high dose (0.05, 10 and 1000 µg E2/kg body weight daily, respectively) were orally applied to sows from insemination until sampling at day 10 of pregnancy and compared to carrier-treated controls. RNA-sequencing revealed a dose-dependent increase of 14, 17 and 27 differentially expressed genes (DEG), respectively. Overall, the maternal E2 treatment perturbed gene expression of the endometrium, potentially altering the uterine histotroph.
Project description:Regulatory Mechanisms of Atrial Remodeling of Mitral Regurgitation Pigs This study enrolled 6 pigs (age: 18 months) and divided into three groups: mitral regurgitation pigs (MR) (n = 2; 2 males sacrificed 12 months after surgery), MR pigs treated with valsartan (MRV) (n = 2; 2 males age-matched to MR sacrificed 12 months after surgery), and normal control pigs (NC) (n = 2; 2 males age-matched to MR pigs). Valsartan (3.43 mg/kg/day), a type I angiotensin II receptor blocker, was administered from one week before surgery and then daily after surgery in the MRV group. We sought to systemically elucidate critical differences in the alteration of RNA expression pattern between the atrial myocardium of pigs with and without MR, and between the atrial myocardium of MR pigs with and without valsartan using high-density oligonucleotide microarrays and functional network enrichment analysis.