Project description:Enterohaemorrhagic E. coli (EHEC) is a significant human pathogens that cause outbreaks of haemorrhagic colitis and haemolytic uremic syndrome. During infection, pathogens compete for iron with the host, and one mechanism by which EHEC obtains iron is through haem uptake and utilitisation which is encoded by the chu operon. We have demonstrated that the haem receptor chuA is regulated by the Crp-cAMP-dependent sRNA CyaR. We further demonstrate that activation of chuA by CyaR is independent of the chuA RNA-thermometer and termination by Rho. These results highlight the ability of regulatory sRNAs to integrate multiple environmental signals into a layered hierarchy of signal input.
Project description:Transcript abundance in Escherichia coli O157:H7 was determined in the presence or absence of pulsed expression of the small RNA, AsxR.
Project description:Pathogenic biofilms have been associated with persistent infections due to their high resistance to antimicrobial agents. To identify non-toxic biofilm inhibitors for enterohemorrhagic Escherichia coli O157:H7, indole-3-acetaldehyde was used and reduced E. coli O157:H7 biofilm formation. Global transcriptome analyses revealed that indole-3-acetaldehyde most repressed two curli operons, csgBAC and csgDEFG, and induced tryptophanase (tnaAB) in E. coli O157:H7 biofilm cells. Electron microscopy showed that indole-3-acetaldehyde reduced curli production in E. coli O157:H7. Together, this study shows that Actinomycetales are an important resource of biofilm inhibitors as well as antibiotics.
Project description:Transcript abundance in Escherichia coli O157:H7 was determined in the presence or absence of pulsed expression of the small RNA, AsxR. AsxR was cloned under the control the arabinose inducible promoter Para. Escherichia coli O157:H7 str. TUV93-0 with pAsxR or empty vector was cultured in MEM-HEPES media to an OD600 of 0.8 and 0.2% arabinose added. 10min after addition of arabinose 10ml of cells were harvested and and pellets resuspended in 1ml of Trizol and total RNA isolated. RNAs were labelled using the SuperScript Plus indirect cDNA labelling System. Triplicate control RNAs were pooled and hybridised to seperate AsxR test RNAs on three microarays. Arrays were hybridised using the Maui hybridisation platform and Scann using and Axon Autoloader Scanner. GenePix software was used to analyse images and GPR files were analysed using Genespring 7.3.1.
Project description:Contamination with enterohemorrhagic Escherichia coli O157:H7 (EHEC) is a worldwide problem but there is no effective therapy available for EHEC infection. Biofilm formation is closely related with EHEC infection and is one of the mechanisms of antimicrobial resistance. Antibiofilm screening of 560 plant secondary metabolites against EHEC shows that ginkgolic acids C15:1 and C17:1 at 5 μg/ml and Ginko biloba extract at 100 μg/ml significantly inhibited EHEC biofilm formation on the surface of polystyrene, nylon membrane, and glass. Importantly, the working concentration of ginkgolic acids and G. biloba extract did not affect bacterial growth and has been known to be non-toxic to human. Transcriptional analyses showed that ginkgolic acid C15:1 repressed curli genes and prophage genes in EHEC, which were corroborated by reduced fimbriae production and biofilm reduction in EHEC. Interestingly, ginkgolic acids and G. biloba extract did not inhibit the biofilm formation of commensal E. coli K-12 strain. The current study suggests that plant secondary metabolites are important resource of biofilm inhibitors, as well as other bioactive compounds.