Project description:Forkhead transcription factors are essential for diverse processes in early embryonic development and organogenesis. Foxd1 is required during kidney development and its inactivation results in failure of nephron progenitor cell differentiation. Foxd1 is expressed in interstitial cells adjacent to nephron progenitor cells, suggesting an essential role for the progenitor cell niche in nephrogenesis. To better understand how cortical interstitial cells in general, and FOXD1 in particular, influence the progenitor cell niche, we examined the differentiation states of two progenitor cell subtypes in Foxd1-/- tissue. We found that while nephron progenitor cells are retained in a primitive CITED1-expressing compartment, cortical interstitial cells prematurely differentiate. To identify pathways regulated by FOXD1, we used microarray analysis and screened for target genes by comparison of Foxd1 null and wild type tissues. We chose the E14.5 timepoint because at this stage nephron differentiation is present in wild type kidneys but absent from Foxd1 null kidneys. We examined genes that were upregulated or downregulated in the Foxd1 null compared to wild type.
Project description:Forkhead transcription factors are essential for diverse processes in early embryonic development and organogenesis. Foxd1 is required during kidney development and its inactivation results in failure of nephron progenitor cell differentiation. Foxd1 is expressed in interstitial cells adjacent to nephron progenitor cells, suggesting an essential role for the progenitor cell niche in nephrogenesis. To better understand how cortical interstitial cells in general, and FOXD1 in particular, influence the progenitor cell niche, we examined the differentiation states of two progenitor cell subtypes in Foxd1-/- tissue. We found that while nephron progenitor cells are retained in a primitive CITED1-expressing compartment, cortical interstitial cells prematurely differentiate. To identify pathways regulated by FOXD1, we used microarray analysis and screened for target genes by comparison of Foxd1 null and wild type tissues. We chose the E14.5 timepoint because at this stage nephron differentiation is present in wild type kidneys but absent from Foxd1 null kidneys. We examined genes that were upregulated or downregulated in the Foxd1 null compared to wild type. Embryonic kidneys were harvested from Foxd1-/- and wild type littermates from three E14.5 litters. Three biological replicates were generated per genotype, each containing two non-littermate kidney pairs. Sex of embryos was not determined.