Project description:The aim of this study is to address the functional role of miRNAs in the FoxD1+ renal stroma progenitors and derivatives during embryonic kidney development. To achieve this, we generated transgenic mice that lack miRNAs in the renal stroma lineage (FoxD1 Cre;Dicer), and performed a microarray analysis on E15.5 whole kidneys to determine the transcriptional changes.
Project description:The aim of this study is to address the functional role of miRNAs in the FoxD1+ renal stroma progenitors and derivatives during embryonic kidney development. To achieve this, we generated transgenic mice that lack miRNAs in the renal stroma lineage (FoxD1 Cre;Dicer), and performed a microarray analysis on E18.5 whole kidneys to determine the transcriptional changes. 3 litters of E18.5 FoxD1 Cre;Dicer and control littermate kidneys were used for the microarray analysis. Each litter consists of kidneys pooled from 2 embryos per genotype for the RNA extraction.
Project description:The aim of this study is to address the functional role of miRNAs in the FoxD1+ renal stroma progenitors and derivatives during embryonic kidney development. To achieve this, we generated transgenic mice that lack miRNAs in the renal stroma lineage (FoxD1 Cre;Dicer), and performed a microarray analysis on E18.5 whole kidneys to determine the transcriptional changes.
Project description:Dicer-dependent miRNAs are required for UB morphogenesis and differentiation during metanephric kidney development. We used microarray analysis to identify genes whose expression in the UB epithelium are altered from UB-specific ablation of Dicer. E15.5 UB cells from control and Dicer mutant kidneys were FACS sorted for transcription profiling.
Project description:Forkhead transcription factors are essential for diverse processes in early embryonic development and organogenesis. Foxd1 is required during kidney development and its inactivation results in failure of nephron progenitor cell differentiation. Foxd1 is expressed in interstitial cells adjacent to nephron progenitor cells, suggesting an essential role for the progenitor cell niche in nephrogenesis. To better understand how cortical interstitial cells in general, and FOXD1 in particular, influence the progenitor cell niche, we examined the differentiation states of two progenitor cell subtypes in Foxd1-/- tissue. We found that while nephron progenitor cells are retained in a primitive CITED1-expressing compartment, cortical interstitial cells prematurely differentiate. To identify pathways regulated by FOXD1, we used microarray analysis and screened for target genes by comparison of Foxd1 null and wild type tissues. We chose the E14.5 timepoint because at this stage nephron differentiation is present in wild type kidneys but absent from Foxd1 null kidneys. We examined genes that were upregulated or downregulated in the Foxd1 null compared to wild type. Embryonic kidneys were harvested from Foxd1-/- and wild type littermates from three E14.5 litters. Three biological replicates were generated per genotype, each containing two non-littermate kidney pairs. Sex of embryos was not determined.
Project description:Transcriptional profiling to identify genes differentially regulated by stromal specific Ptch1-deficiency during embryonic kidney development. Ptch1 was specifically deleted from stromal progenitors using Foxd1-driven Cre recombinase
Project description:Transcriptional profiling of E15.5 whole kidneys with a conditional deletion of Irx3/5 in the nephron progenitor cell lineage. Irx3/5 were conditionally deleted using Six2-driven Cre-recombinase. Data will provide novel insight into the functional contributions of Irx3/5 towards nephrogenesis.
Project description:Forkhead transcription factors are essential for diverse processes in early embryonic development and organogenesis. Foxd1 is required during kidney development and its inactivation results in failure of nephron progenitor cell differentiation. Foxd1 is expressed in interstitial cells adjacent to nephron progenitor cells, suggesting an essential role for the progenitor cell niche in nephrogenesis. To better understand how cortical interstitial cells in general, and FOXD1 in particular, influence the progenitor cell niche, we examined the differentiation states of two progenitor cell subtypes in Foxd1-/- tissue. We found that while nephron progenitor cells are retained in a primitive CITED1-expressing compartment, cortical interstitial cells prematurely differentiate. To identify pathways regulated by FOXD1, we used microarray analysis and screened for target genes by comparison of Foxd1 null and wild type tissues. We chose the E14.5 timepoint because at this stage nephron differentiation is present in wild type kidneys but absent from Foxd1 null kidneys. We examined genes that were upregulated or downregulated in the Foxd1 null compared to wild type.