Project description:The rapid evolution of toxin resistance in animals has important consequences for the ecology of species and our economy. Pesticide resistance in insects has been a subject of intensive study, however, very little is known about how Drosophila species became resistant to natural toxins with ecological relevance, such as α-amanitin that is produced in deadly poisonous mushrooms. Here we performed a microarray study to elucidate the genes, chromosomal loci, molecular functions, biological processes, and cellular components that contribute to the α-amanitin resistance phenotype in Drosophila melanogaster. We suggest that toxin entry blockage through the cuticle, phase I and II detoxification, sequestration in lipid particles, and proteolytic cleavage of α-amanitin contribute in concert to this quantitative trait. We speculate that the resistance to mushroom toxins in Drosophila melanogaster and perhaps in mycophagous Drosophila species has evolved as a cross-resistance to pesticides or other xenobiotic substances.
Project description:The mechanisms underlying natural variation in lifespan and ageing rate remain largely unknown. We performed microarray experiment to characterise genome-wide expression patterns of a long-lived, natural variant of Drosophila melanogaster resulting from selection for starvation resistance (SR) and compare it with normal-lived control flies (C).
Project description:Thermal acclimation study on Drosophila melanogaster reared at 3 different temperatures (12, 25, and 31oC). The proteomic profiles of D. melanogaster under these different temperatures were analyzed and compared using label-free tandem mass spectrometry.