Project description:To comprehend the gene expression profile in rice panicle under high temperature, Agilent 4×44k rice oligo microarray experiments were carried out using rice panicle of post-meiosis at 0 min, 10min, 20 min, 60 min, and 2 hr after the treatment of 40 degree centigrade, and the differentially expressed genes at the time course were involved in binding, catalysis, stress response, and cellular process. The significantly expressed genes were mainly up-regulated. Among HR genes, the predominant transcription factor gene families were Hsf, NAC, AP2/ERF, WRKY, MYB, and C2H2. The MapMan analysis demonstrated that, under heat treatment, the HR genes were enriched in the pathways related to biotic stress, abiotic stress including heat and cold, and cell cycle and development, ubiquitin-proteasome , lipid and secondary metabolisms, which revealed the great importance of cross-talk and protein homeostasis in response to heat in rice panicle of post-meiosis.
Project description:To comprehend the profile of rice gene expression at reproductive stage under high temperature, Agilent 4×44k rice oligo microarray experiments were carried out using rice panicle of developmental stage 7-9 at 0min, 20min, 1hr, 2hr, 4hr, and 8hr after the treatment of 40 degree centigrade, and the significantly expressed genes mainly involved in transcriptional regulation, transport, cellular homeostasis, and stress response were identified. Among them, the predominant transcription factor gene families were Hsf, NAC, AP2/ERF, WRKY, MYB, and C2H2. KMC analysis discovered the time-dependent gene expression pattern under heat. The results of motif co-occurrence on the promoters of genes from an early up-regulated cluster showed the important roles of GCC box, HSE, ABRE, and CE3, and unraveled the possible cross-talk mechanism during heating. The response model central to ROS combined with transcriptome data indicated the great importance to maintain ROS balance in heat response in rice panicle and the wide existing of cross-talks.
Project description:Three rice major tissues, namely flag leaf, shoot and panicle, were involved in this study. Each tissue had two kinds stress treatment, drought and high salinity, in 3 different time courses. For drought treated samples, an additional water recovery was applied. Each experiment had three replicates. Keywords: Comparison of gene expression in three tissues with stress treatment and without treatment To globally elucidate potential genes involved in drought and high-salinity stresses responses in rice, an oligomer microarray covering 37,132 genes including cDNA or EST supported and putative genes was applied to study the expression profiling of shoot, flag leaf, and panicle under drought or high-salinity treatment. Three rice major tissues, namely flag leaf, shoot and panicle, were involved in this study. Each tissue had two kinds stress treatment, drought and high salinity, in 3 different time courses. For drought treated samples, an additional water recovery was applied. Each experiment had three replicates.
Project description:To comprehend the profile of rice gene expression at reproductive stage under high temperature, Agilent 4M-CM-^W44k rice oligo microarray experiments were carried out using rice panicle of developmental stage 7-9 at 0min, 20min, 1hr, 2hr, 4hr, and 8hr after the treatment of 40 degree centigrade, and the significantly expressed genes mainly involved in transcriptional regulation, transport, cellular homeostasis, and stress response were identified. Among them, the predominant transcription factor gene families were Hsf, NAC, AP2/ERF, WRKY, MYB, and C2H2. KMC analysis discovered the time-dependent gene expression pattern under heat. The results of motif co-occurrence on the promoters of genes from an early up-regulated cluster showed the important roles of GCC box, HSE, ABRE, and CE3, and unraveled the possible cross-talk mechanism during heating. The response model central to ROS combined with transcriptome data indicated the great importance to maintain ROS balance in heat response in rice panicle and the wide existing of cross-talks. Heat shock induced gene expression in rice panicle of developmental stage 7-9 was measured at 0min, 20min, 1hr, 2hr, 4hr, and 8hr after the treatment of 40 degree centigrade in plant growth chamber. Two independent replicate experiments were performed at each time point.
Project description:To comprehend the profile of rice gene expression at reproductive stage under high temperature, Agilent 4x44k rice oligo microarray experiments were carried out using rice panicle of developmental stage 7-9 at 0min, 10min, 20min, 60min, and 2hr after the treatment of 40 degree centigrade, and the significantly expressed genes mainly involved in transcriptional regulation, transport, cellular homeostasis, and stress response were identified. Among them, the predominant transcription factor gene families were Hsf, NAC, AP2/ERF, WRKY, MYB, and C2H2. KMC analysis discovered the time-dependent gene expression pattern under heat. The results of motif co-occurrence on the promoters of genes from an early up-regulated cluster showed the important roles of GCC box, HSE, ABRE, and CE3, and unraveled the possible cross-talk mechanism during heating. The response model central to ROS combined with transcriptome data indicated the great importance to maintain ROS balance in heat response in rice panicle and the wide existing of cross-talks. Heat shock induced gene expression in rice panicle of late developmental stage was measured at 0min, 10min, 20min, 60min, and 2hr after the treatment of 40 degree centigrade in plant growth chamber. Two independent replicate experiments were performed at each time point.
Project description:Rice reproductive development is highly sensitive to high temperature stress. In rice flowering occurs over a period of at least 5 days. Heat stress alters the global gene expression dynamics in panicle especially during pollen development, anthesis and grain filling. Some of the rice genotypes like Nagina 22 show better spikelet fertility and grain filling compared to high yielding and popular rice cultivars like IR 64. We carried out microarray analysis of 8 days heat stressed panicles of Nagina22, heat and drought tolerant aus rice cultivar and IR64, a heat susceptible indica genotype along with unstressed samples of Nagina22 and IR64 so as to understand the transcriptome dynamics in these two genotypes under heat stress and to identify the genes important for governing heat stress tolerance in rice.
Project description:Lysine acetylation is a dynamic and reversible post-translational modification that plays an imporant role in the gene transcription regulation. Here, we report high quality proteome-scale data for lysine-acetylation sites and proteins in rice (Oryza sativa). A total of 1337 Kac sites in 716 Kac proteins with diverse biological functions and subcellular localizations were identified in rice seedlings.