Project description:Three rice major tissues, namely flag leaf, shoot and panicle, were involved in this study. Each tissue had two kinds stress treatment, drought and high salinity, in 3 different time courses. For drought treated samples, an additional water recovery was applied. Each experiment had three replicates. Keywords: Comparison of gene expression in three tissues with stress treatment and without treatment To globally elucidate potential genes involved in drought and high-salinity stresses responses in rice, an oligomer microarray covering 37,132 genes including cDNA or EST supported and putative genes was applied to study the expression profiling of shoot, flag leaf, and panicle under drought or high-salinity treatment. Three rice major tissues, namely flag leaf, shoot and panicle, were involved in this study. Each tissue had two kinds stress treatment, drought and high salinity, in 3 different time courses. For drought treated samples, an additional water recovery was applied. Each experiment had three replicates.
Project description:To comprehend the gene expression profile in rice flag leaf under high temperature, Agilent 4×44k rice oligo microarray experiments were carried out using rice flag leaf of reproductive stage at 0 min, 20 min, 60 min, 2 hr, 4 hr, and 8 hr after the treatment of 40 degree centigrade, and the significantly expressed genes mainly involved in transcriptional regulation, transport, protein binding, antioxidant, and stress response were identified. Among them, the predominant transcription factor gene families were Hsf, NAC, AP2/ERF, WRKY, MYB, and C2H2. KMC analysis discovered the time-dependent gene expression pattern under heat. The metabolism pathway analysis demonstrated that, under heat treatment, glycolysis and ubiquitin-proteasome was enhanced, and TCA, gluconeogenesis, the secondary metabolism and light-reaction in the photosystem was dramatically repressed, which revealed the great importance of maintaining primary metabolism and protein homeostasis in response to heat in rice flag leaf.
Project description:Three rice major tissues, namely flag leaf, shoot and panicle, were involved in this study. Each tissue had two kinds stress treatment, drought and high salinity, in 3 different time courses. For drought treated samples, an additional water recovery was applied. Each experiment had three replicates. Keywords: Comparison of gene expression in three tissues with stress treatment and without treatment
Project description:To understand the dynamics and global gene reprogramming in the early response to mechanical wounding in rice, the transcriptional response to mechanical injury was analyzed. A time-course experiment revealed the highly dynamic nature of the wound response in rice. Mechanical wounding triggered extensive gene expression reprogramming in the locally wounded leaf, affecting various physiological processes, including defense mechanisms and potentially tissue repair and regeneration. The rice response to mechanical wounding displayed both differences and similarities compared to the response to jasmonate treatment. These results highlight the importance of early JA signaling in response to mechanical stress in rice. This analysis provides an overview of the global transcriptional response to mechanical stress in rice, offering valuable insights for future studies on rice's response to injury, insect attack, and abiotic stresses.
Project description:To comprehend the gene expression profile in rice flag leaf under high temperature, Agilent 4M-CM-^W44k rice oligo microarray experiments were carried out using rice flag leaf of reproductive stage at 0 min, 20 min, 60 min, 2 hr, 4 hr, and 8 hr after the treatment of 40 degree centigrade, and the significantly expressed genes mainly involved in transcriptional regulation, transport, protein binding, antioxidant, and stress response were identified. Among them, the predominant transcription factor gene families were Hsf, NAC, AP2/ERF, WRKY, MYB, and C2H2. KMC analysis discovered the time-dependent gene expression pattern under heat. The metabolism pathway analysis demonstrated that, under heat treatment, glycolysis and ubiquitin-proteasome was enhanced, and TCA, gluconeogenesis, the secondary metabolism and light-reaction in the photosystem was dramatically repressed, which revealed the great importance of maintaining primary metabolism and protein homeostasis in response to heat in rice flag leaf. Heat shock induced gene expression in rice flag leaf of reproductive stage was measured at 0 min, 20 min, 60 min, 2 hr, 4 hr, and 8 hr after the treatment of 40 degree centigrade in plant growth chamber. Two independent replicate experiments were performed at each time point.
Project description:Leaf rolling and discoloration are two chilling injury symptoms that are widely adopted as indicators for evaluation of cold tolerance at the seedling stage in rice, respectively. However, their relationship has not been well investigated, in particular the mechanism on how low temperature causes leaf rolling at a genome-wide level. In this study, a cold-tolerant japonica cultivar Lijiangxintuanheigu and a cold-sensitive indica cultivar Sanhuangzhan-2 were subjected to different low temperature treatments and physiological and genome-wide gene expression analysis were conducted. Our results showed that leaf rolling happened at temperatures lower than 11℃, but discoloration appeared at moderately low temperatures, such as 13℃. Chlorophyll contents of the two cultivars significantly decreased under 13℃, but didn’t change under 11℃. Contrastly, their relative water contents and the relative electrolyte leakages decreased significantly. Genome-wide gene expression profiling of LTH revealed that the calcium signaling related genes and the genes related to ABA degradation significantly changed under 11℃. Moreover, numerous genes in DREB, MYB, bZIP, NAC, Zin finger, bHLH, WRKY gene families were differently expressed. Furthermore, many aquaporin genes, the key genes in trehalose and starch synthesis were down-regulated under 11℃. These results suggest that the two chilling injury symptoms are controlled by different mechanisms. Cold-induced leaf rolling is associated with calcium and ABA signaling pathways, and subjected to regulation of multiple transcription regulators. The suppression of aquaporin genes and reduced accumulation of soluble sugars under cold stress result in reduction of water potential in cells and consequently, leaf rolling.
Project description:We analyzed the transcriptome profiles for rice grain from heat-tolerant and -sensitive lines in response to high night temperatures at the early milky stage using the Illumina Sequencing method. On the 8th day after the labeled florets flowered, plants with the same label were transferred to chambers and maintained at a temperature of 38.0â±â0.5°C (treatment) or 25.0â±â0.5°C (control) for the dark period (10 h), and 26.0â±â0.5°C (both treatment and control) for the light period (14 h). Three biological replicates of the temperature treatments were grown under the same conditions. After 48 h of treatment, samples containing 45 grains with labels from the same region (middle to bottom part) of labelled ears were harvested, packed in aluminum foil, and flash-frozen in liquid nitrogen until further use. A total of 12 rice grain samples were harvested, i.e., controls (TC1, TC2 and TC3) and treatments (TT1, TT2 and TT3) of the three biological replicates of the heat-tolerant line, and controls (SC1, SC2 and SC3) and treatments (ST1, ST2 and ST3) of the three biological replicates of the heat-sensitive line.