Project description:We have used a social defeat (SD) mouse model of post-traumatic stress disorder (PTSD) that is based on a brief exposure of a mouse to the aggressor mice for either 5 d or 10 d stress periods. Mice simulating aspects of posttraumatic stress disorder exhibit behavioral changes, body weight gain, increased body temperature, and inflammatory and fibrotic histopathologies and transcriptomic changes of heart tissue. Liver tissue of these mice was subjected to mRNA analysis. Transcriptomic analysis of liver indicated chronic toxicities and metabolic alterations in aggressor-exposed mice that possibly contributed to the persistent metabolic disturbance Two-condition experiment, C57BL6/J mice Biological replicates: 4-6 control replicates, 5-6 stressed replicates.
Project description:We have used a social defeat (SD) mouse model of post-traumatic stress disorder (PTSD) that is based on a brief exposure of a mouse to the aggressor mice for either 5 d or 10 d stress periods. Mice simulating aspects of posttraumatic stress disorder exhibit behavioral changes, body weight gain, increased body temperature, and inflammatory and fibrotic histopathologies and transcriptomic changes of heart tissue. Liver tissue of these mice was subjected to mRNA analysis. Transcriptomic analysis of liver indicated chronic toxicities and metabolic alterations in aggressor-exposed mice that possibly contributed to the persistent metabolic disturbance
Project description:Posttraumatic stress disorder (PTSD) is a prevalent psychiatric disorder. Several studies have attempted to characterize molecular alterations associated with PTSD, but most findings were limited to the investigation of specific cellular markers in the periphery or defined brain regions. In the current study, we aimed to unravel affected molecular pathways/mechanisms in the fear circuitry associated with PTSD. We interrogated a foot shock induced-PTSD mouse model by integrating proteomics and metabolomics profiling data. Alterations at the proteome level were analyzed using in vivo 15N metabolic labeling combined with mass spectrometry in prelimbic cortex (PrL), anterior cingulate cortex (ACC), basolateral amygdala (BLA), central nucleus of amygdala (CeA) and CA1 of hippocampus between shocked and non-shocked (control) mice, with and without fluoxetine treatment.
Project description:Posttraumatic stress disorder (PTSD) is a prevalent psychiatric disorder. Several studies have attempted to characterize molecular alterations associated with PTSD, but most findings were limited to the investigation of specific cellular markers in the periphery or defined brain regions. In the current study, we aimed to unravel affected molecular pathways/mechanisms in the fear circuitry associated with PTSD. We interrogated a foot shock induced PTSD mouse model by integrating proteomics and metabolomics profiling data. Alterations at the proteome level were analyzed using in vivo 15N metabolic labeling combined with mass spectrometry in prelimbic cortex (PrL), anterior cingulate cortex (ACC), basolateral amygdala (BLA), central nucleus of amygdala (CeA) and CA1 of hippocampus between shocked and non-shocked (control) mice, with and without fluoxetine treatment.
Project description:Posttraumatic stress disorder (PTSD) is a prevalent psychiatric disorder. Several studies have attempted to characterize molecular alterations associated with PTSD, but most findings were limited to the investigation of specific cellular markers in the periphery or defined brain regions. In the current study, we aimed to unravel affected molecular pathways/mechanisms in the fear circuitry associated with PTSD. We interrogated a foot shock induced-PTSD mouse model by integrating proteomics and metabolomics profiling data. Alterations at the proteome level were analyzed using in vivo 15N metabolic labeling combined with mass spectrometry in prelimbic cortex (PrL), anterior cingulate cortex (ACC), basolateral amygdala (BLA), central nucleus of amygdala (CeA) and CA1 of hippocampus between shocked and non-shocked (control) mice, with and without fluoxetine treatment.
Project description:Posttraumatic stress disorder (PTSD) is a prevalent psychiatric disorder. Several studies have attempted to characterize molecular alterations associated with PTSD, but most findings were limited to the investigation of specific cellular markers in the periphery or defined brain regions. In the current study, we aimed to unravel affected molecular pathways/mechanisms in the fear circuitry associated with PTSD. We interrogated a foot shock induced-PTSD mouse model by integrating proteomics and metabolomics profiling data. Alterations at the proteome level were analyzed using in vivo 15N metabolic labeling combined with mass spectrometry in prelimbic cortex (PrL), anterior cingulate cortex (ACC), basolateral amygdala (BLA), central nucleus of amygdala (CeA) and CA1 of hippocampus between shocked and non-shocked (control) mice, with and without fluoxetine treatment.