Project description:Experimental research on the effects of abiotic stress over grapevine has mainly focused on water shortage. The adaptation of plants to stress is a complex response triggered by cascades of molecular networks involved in stress perception, signal transduction, and the expression of specific stress-related genes and metabolites. Approaches such as array-based transcript profiling allow assessing the expression of thousands of genes in control and stress tissues. Gene expression upon acute (heat and light) and steady (drought) individual stresses and field conditions were compared in two grapevine (Vitis vinifera L.) varieties, Trincadeira (TR) and Touriga Nacional (TN).
Project description:Background: Global climate change, in particular the entailed predicted temperature increase, will noticeably affect plants vegetative and reproductive development. High temperatures alter the composition of the grapevine fruit, one of the most important fruits produced worldwide. This is leading to variable yield and quality, already observed in many growing regions in recent years. However, physiological processes underlying temperature response and tolerance of the grapevine fruit have hardly been investigated. Currently, all studies on fleshy fruits investigating their abiotic stress response on a molecular level were conducted during the day but possible night-specific variations were overlooked. The present study explores the grapevine fruit transcriptomic response at different developmental stages upon heat stress at day and night. Methodology/Principal Results: Short heat stresses (2 h) were applied at day and night to vines bearing clusters sequentially ordered according to the developmental stages along their vertical axis. The recently proposed microvine model was grown in climatic chambers in order to circumvent common constraints and biases introduced in field experiments with perennial vines. Post-véraison berry heterogeneity inside clusters was evaded upon constituting homogenous batches following organic acid and sugar measurements on individual berries. A whole genome transcriptomic approach was subsequently conducted using NimbelGen® 090918 12X microarrays (30K). Results revealed important differences in heat stress responsive pathways according to day or night treatment, in particular regarding genes within phenylpropanoid metabolism. Precise distinction of post-véraison stages led to a stage-specific detection of anthocyanin-related transcripts repressed by heat. Important modifications in cell wall-related processes as well as indications for a heat-induced delay of ripening and sugar accumulation were observed at véraison and reversed in later stages. Conclusion: This first day - night study on heat stress adaption of the grapevine berry shows that the transcriptome of fleshy fruits is differentially affected by abiotic stress at night. The present results emphasize the necessity to include different developmental stages and especially different time points in transcriptomic studies. A total of 12 samples were analyzed representing three berry developmental stages (two after the onset of ripening, one during green growth). At each stage, heat stress was applied at day and night. Controls and treated berry samples were drawn in triplicates (two in duplicates) at day and at night on the microvine dwarf (Dwarf Rapid Cycling and Continous Flowering; DRCF) gibberellin-insensitive (GAI) mutant.
Project description:Background: Global climate change, in particular the entailed predicted temperature increase, will noticeably affect plants vegetative and reproductive development. High temperatures alter the composition of the grapevine fruit, one of the most important fruits produced worldwide. This is leading to variable yield and quality, already observed in many growing regions in recent years. However, physiological processes underlying temperature response and tolerance of the grapevine fruit have hardly been investigated. Currently, all studies on fleshy fruits investigating their abiotic stress response on a molecular level were conducted during the day but possible night-specific variations were overlooked. The present study explores the grapevine fruit transcriptomic response at different developmental stages upon heat stress at day and night. Methodology/Principal Results: Short heat stresses (2 h) were applied at day and night to vines bearing clusters sequentially ordered according to the developmental stages along their vertical axis. The recently proposed microvine model was grown in climatic chambers in order to circumvent common constraints and biases introduced in field experiments with perennial vines. Post-véraison berry heterogeneity inside clusters was evaded upon constituting homogenous batches following organic acid and sugar measurements on individual berries. A whole genome transcriptomic approach was subsequently conducted using NimbelGen® 090918 12X microarrays (30K). Results revealed important differences in heat stress responsive pathways according to day or night treatment, in particular regarding genes within phenylpropanoid metabolism. Precise distinction of post-véraison stages led to a stage-specific detection of anthocyanin-related transcripts repressed by heat. Important modifications in cell wall-related processes as well as indications for a heat-induced delay of ripening and sugar accumulation were observed at véraison and reversed in later stages. Conclusion: This first day - night study on heat stress adaption of the grapevine berry shows that the transcriptome of fleshy fruits is differentially affected by abiotic stress at night. The present results emphasize the necessity to include different developmental stages and especially different time points in transcriptomic studies.
Project description:Study of gene expression during Plasmopara viticola infection in the resistant Vitis vinifera cultivar 'Regent'. The oomycete fungus Plasmopara viticola (Berk. et Curt.) Berl. et de Toni is responsible for grapevine downy mildew disease. Most of the cultivated grapevines are sensitive to this pathogen, thus requiring intensive fungicide treatments. The molecular basis of resistance to this pathogen is poorly understood. We have carried out a cDNA microarray transcriptome analysis to identify grapevine genes associated with resistance traits. Early transcriptional changes associated with downy mildew infection in the resistant Vitis vinifera cultivar ‘Regent’, when compared to the susceptible cultivar ‘Trincadeira’, were analyzed. Transcript levels were measured at three time-points: 0, 6 and 12 hours post inoculation (hpi). Our data indicate that resistance in V. vinifera ‘Regent’ is induced after infection. This study provides the identification of several candidate genes that may be related to ‘Regent’ defense mechanisms, allowing a better understanding of this cultivar's resistance traits.
Project description:In order to investigate the putative roles of the VvPLCP genes in grapevine resistance, the leaves-specific expression patterns of VvPLCPs were analyzed according to transcriptome data in two cultivars including V. vinifera cv. ‘Zitian Seedless’ and Vitis rootstocks ‘Kober 5BB’ when infected with P. viticola
Project description:White grape (Vitis vinifera cv. Furmint) berry samples subjected to natural noble rot were collected in a vineyard in Mád, Hungary (Tokaj wine region). Raw data include grapevine and Botrytis cinerea sequence reads.
Project description:To elucidate the effect of heat stress and the following recovery on grapevines and identify some regulated genes representing the classical heat stress response and thermotolerance mechanisms, transcript abundance of grapevine (Vitis vinifera L.) were quantified using the Affymetrix Grape Genome oligonucleotide microarray (15,700 transcripts), followed by quantitive Real-Time PCR validation for some transcript profiles. The treatment: heat stress(5h) and the following recovery (18.5h), sampling were conducted at two time respectively. ****[PLEXdb(http://www.plexdb.org) has submitted this series at GEO on behalf of the original contributor, Lijun Wang. The equivalent experiment is VV40 at PLEXdb.]
Project description:Study of gene expression during Plasmopara viticola infection in the resistant Vitis vinifera cultivar 'Regent'. The oomycete fungus Plasmopara viticola (Berk. et Curt.) Berl. et de Toni is responsible for grapevine downy mildew disease. Most of the cultivated grapevines are sensitive to this pathogen, thus requiring intensive fungicide treatments. The molecular basis of resistance to this pathogen is poorly understood. We have carried out a cDNA microarray transcriptome analysis to identify grapevine genes associated with resistance traits. Early transcriptional changes associated with downy mildew infection in the resistant Vitis vinifera cultivar M-bM-^@M-^XRegentM-bM-^@M-^Y, when compared to the susceptible cultivar M-bM-^@M-^XTrincadeiraM-bM-^@M-^Y, were analyzed. Transcript levels were measured at three time-points: 0, 6 and 12 hours post inoculation (hpi). Our data indicate that resistance in V. vinifera M-bM-^@M-^XRegentM-bM-^@M-^Y is induced after infection. This study provides the identification of several candidate genes that may be related to M-bM-^@M-^XRegentM-bM-^@M-^Y defense mechanisms, allowing a better understanding of this cultivar's resistance traits. 3 time points: 0, 6 and 12 hours post inoculation by P. viticola. Two cultivars: control (Trinacedira) and test (Regent). Two biological replicates were performed at 0 hpi, and 3 biological replicates at 6 and 12hpi. At 12hpi, three technical replicates also were performed.