Project description:WRKY genes are transcription factors involved in plant response to pathogen attacks in many plant species. These proteins have been shown to activate expression of defence genes in a salicylic acid- and/or jasmonic acid-dependent signalling pathway. To understand the molecular mechanisms involved in grapevine defence, we previously identified a WRKY gene, VvWRKY1, which was able to enhance tolerance to fungal pathogens when overexpressed in tobacco. To elucidate its role in grapevine, we generated transgenic grapevines that overexpress VvWRKY1. Microarray analyses were performed to compare global gene expression in leaves of the transgenic and wild-type lines. Results showed that expression of genes encoding defence-related proteins was enhanced in the transgenic 35S::VvWRKY1 line. Quantitative RT-PCR analysis confirmed that three genes putatively involved in jasmonic acid signalling pathway, two genes encoding JASMONATE ZIM-domain (JAZ) proteins and one lipoxygenase, are over-expressed. The ability of VvWRKY1 to trans-activate their corresponding promoters was confirmed by transient expression assay in grape protoplasts. After challenging with the downy mildew pathogen Plasmopara viticola, resistance was enhanced in the transgenic line compared to the wild-type line. These results suggest that VvWRKY1 transcription factor is able to control plant disease resistance to one of the main grapevine pathogen by activating jasmonic acid signalling pathway in grapevine.
Project description:Study of gene expression during Plasmopara viticola infection in the resistant Vitis vinifera cultivar 'Regent'. The oomycete fungus Plasmopara viticola (Berk. et Curt.) Berl. et de Toni is responsible for grapevine downy mildew disease. Most of the cultivated grapevines are sensitive to this pathogen, thus requiring intensive fungicide treatments. The molecular basis of resistance to this pathogen is poorly understood. We have carried out a cDNA microarray transcriptome analysis to identify grapevine genes associated with resistance traits. Early transcriptional changes associated with downy mildew infection in the resistant Vitis vinifera cultivar ‘Regent’, when compared to the susceptible cultivar ‘Trincadeira’, were analyzed. Transcript levels were measured at three time-points: 0, 6 and 12 hours post inoculation (hpi). Our data indicate that resistance in V. vinifera ‘Regent’ is induced after infection. This study provides the identification of several candidate genes that may be related to ‘Regent’ defense mechanisms, allowing a better understanding of this cultivar's resistance traits.
Project description:Eutypa dieback is a vascular disease that may severely affect vineyards throughout the world. In the present work, microarrays analysis were made in order (i) to improve our knowledge of grapevine (Vitis vinifera cv. Cabernet-Sauvignon) responses to Eutypa lata, the causal agent of Eutypa dieback and (ii) to identify genes that may prevent symptom development. Qiagen/Operon grapevine microarrays bearing 14,500 probes were used to compare between three experimental conditions (in vitro, greenhouse, vineyard), foliar material of infected symptomatic plants (S+R+), infected asymptomatic plants (S-R+), and healthy plants (S-R-). These plants were characterized by symptoms notation after natural (vineyard) or experimental (in vitro, greenhouse) infection, re-isolation of the fungus located in the lignified parts, and the formal identification of E. lata mycelium by PCR. Semi-quantitative RT-PCR experiments were run to confirm the expression of some genes of interest in response to E. lata. Their expression profiles were also studied in response to other grapevine pathogens (E. necator, P. viticola, B. cinerea). (i) Five functional categories including metabolism, defense reactions, interaction with environment, transport and transcription were up-regulated in S+R+ plants compared to S-R- plants. These genes, which cannot prevent infection and symptom development, are not specific since they were also upregulated after infection by powdery mildew, downy mildew and black rot. (ii) Most of the genes that may prevent symptom development are associated with the light phase of photosynthesis. This finding is discussed in the context of previous data on the mode of action of eutypin and Eutypa secreted polypeptide fraction.
Project description:Arabidopsis does not support the growth and asexual reproduction of the barley pathogen, Blumeria graminis f. sp. hordei Bgh). A majority of germlings fail to penetrate the epidermal cell wall and papillae. To gain additional insight into this interaction, we determined whether the salicylic acid (SA) or jasmonate (JA)/ethylene (ET) defence pathways played a role in blocking barley powdery mildew infections. Only the eds1 mutant and NahG transgenics supported a modest increase in penetration success by the barley powdery mildew. We also compared the global gene expression patterns of Arabidopsis inoculated with the non-host barley powdery mildew to those inoculated with a virulent, host powdery mildew, Erysiphe cichoracearum. Genes repressed by inoculations with non-host and host powdery mildews relative to non-inoculated control plants accounted for two-thirds of the differentially expressed genes. A majority of these genes encoded components of photosynthesis and general metabolism. Consistent with this observation, Arabidopsis growth was inhibited following inoculation with Bgh, suggesting a shift in resource allocation from growth to defence. A number of defence-associated genes were induced during both interactions. These genes likely are components of basal defence responses, which do not effectively block host powdery mildew infections. In addition, genes encoding defensins, anti-microbial peptides whose expression is under the control of the JA/ET signalling pathway, were induced exclusively by non-host pathogens. Ectopic activation of JA/ET signalling protected Arabidopsis against two biotrophic host pathogens. Taken together, these data suggest that biotrophic host pathogens must either suppress or fail to elicit the JA/ET signal transduction pathway.
Project description:Study of gene expression during Plasmopara viticola infection in the resistant Vitis vinifera cultivar 'Regent'. The oomycete fungus Plasmopara viticola (Berk. et Curt.) Berl. et de Toni is responsible for grapevine downy mildew disease. Most of the cultivated grapevines are sensitive to this pathogen, thus requiring intensive fungicide treatments. The molecular basis of resistance to this pathogen is poorly understood. We have carried out a cDNA microarray transcriptome analysis to identify grapevine genes associated with resistance traits. Early transcriptional changes associated with downy mildew infection in the resistant Vitis vinifera cultivar M-bM-^@M-^XRegentM-bM-^@M-^Y, when compared to the susceptible cultivar M-bM-^@M-^XTrincadeiraM-bM-^@M-^Y, were analyzed. Transcript levels were measured at three time-points: 0, 6 and 12 hours post inoculation (hpi). Our data indicate that resistance in V. vinifera M-bM-^@M-^XRegentM-bM-^@M-^Y is induced after infection. This study provides the identification of several candidate genes that may be related to M-bM-^@M-^XRegentM-bM-^@M-^Y defense mechanisms, allowing a better understanding of this cultivar's resistance traits. 3 time points: 0, 6 and 12 hours post inoculation by P. viticola. Two cultivars: control (Trinacedira) and test (Regent). Two biological replicates were performed at 0 hpi, and 3 biological replicates at 6 and 12hpi. At 12hpi, three technical replicates also were performed.
Project description:Arabidopsis does not support the growth and asexual reproduction of the barley pathogen, Blumeria graminis f. sp. hordei Bgh). A majority of germlings fail to penetrate the epidermal cell wall and papillae. To gain additional insight into this interaction, we determined whether the salicylic acid (SA) or jasmonate (JA)/ethylene (ET) defence pathways played a role in blocking barley powdery mildew infections. Only the eds1 mutant and NahG transgenics supported a modest increase in penetration success by the barley powdery mildew. We also compared the global gene expression patterns of Arabidopsis inoculated with the non-host barley powdery mildew to those inoculated with a virulent, host powdery mildew, Erysiphe cichoracearum. Genes repressed by inoculations with non-host and host powdery mildews relative to non-inoculated control plants accounted for two-thirds of the differentially expressed genes. A majority of these genes encoded components of photosynthesis and general metabolism. Consistent with this observation, Arabidopsis growth was inhibited following inoculation with Bgh, suggesting a shift in resource allocation from growth to defence. A number of defence-associated genes were induced during both interactions. These genes likely are components of basal defence responses, which do not effectively block host powdery mildew infections. In addition, genes encoding defensins, anti-microbial peptides whose expression is under the control of the JA/ET signalling pathway, were induced exclusively by non-host pathogens. Ectopic activation of JA/ET signalling protected Arabidopsis against two biotrophic host pathogens. Taken together, these data suggest that biotrophic host pathogens must either suppress or fail to elicit the JA/ET signal transduction pathway. An all pairs experiment design type is where all labeled extracts are compared to every other labeled extract. Keywords: all_pairs
Project description:Arabidopsis does not support the growth and asexual reproduction of the barley pathogen, Blumeria graminis f. sp. hordei Bgh). A majority of germlings fail to penetrate the epidermal cell wall and papillae. To gain additional insight into this interaction, we determined whether the salicylic acid (SA) or jasmonate (JA)/ethylene (ET) defence pathways played a role in blocking barley powdery mildew infections. Only the eds1 mutant and NahG transgenics supported a modest increase in penetration success by the barley powdery mildew. We also compared the global gene expression patterns of Arabidopsis inoculated with the non-host barley powdery mildew to those inoculated with a virulent, host powdery mildew, Erysiphe cichoracearum. Genes repressed by inoculations with non-host and host powdery mildews relative to non-inoculated control plants accounted for two-thirds of the differentially expressed genes. A majority of these genes encoded components of photosynthesis and general metabolism. Consistent with this observation, Arabidopsis growth was inhibited following inoculation with Bgh, suggesting a shift in resource allocation from growth to defence. A number of defence-associated genes were induced during both interactions. These genes likely are components of basal defence responses, which do not effectively block host powdery mildew infections. In addition, genes encoding defensins, anti-microbial peptides whose expression is under the control of the JA/ET signalling pathway, were induced exclusively by non-host pathogens. Ectopic activation of JA/ET signalling protected Arabidopsis against two biotrophic host pathogens. Taken together, these data suggest that biotrophic host pathogens must either suppress or fail to elicit the JA/ET signal transduction pathway. An all pairs experiment design type is where all labeled extracts are compared to every other labeled extract. Computed
Project description:Arabidopsis is a host to the fungal powdery mildew pathogen, Erysiphe cichoracearum, and a nonhost to Blumeria graminis f.sp. hordei, the powdery mildew pathogenic on barley. A screen for mutants that allowed increased entry by this inappropriate or nonhost pathogen on Arabidopsis led to the identification of PEN3. While pen3 mutants permitted both increased penetration and increased hyphal growth by B. g. hordei, they were unexpectedly resistant to E. cichoracearum. This resistance was correlated with the appearance of chlorotic patches and was salicylic acid-dependent. Consistent with this observation, microarray analysis revealed that the salicylic acid defense pathway was hyper-induced in pen3 relative to wild type following inoculation with either E. cichoracearum or B. g. hordei. The pen3 phenotypes result from a loss of function of AtPDR8, a ubiquitously and highly expressed ATP binding cassette transporter. PEN3 protein tagged with green fluorescent protein localized to the plasma membrane in uninfected cells. In infected leaves, the protein concentrated to high levels at infection sites and surrounded fungal penetration pegs. We hypothesize that PEN3 may be involved in exporting toxic substrates to sites of infection and that accumulation of these substrates intracellularly in the pen3 mutant may secondarily activate the salicylic acid pathway. Keywords: disease state comparison