Project description:To determine the effect ALDH1A3 expression on global gene expression in MDA-MB-231 cells and MDA-MB-468 cells In MDA-MB-231 cells, ALDH1A3 was overexperssed (have low endogenous levels of ALDH1A3) and compared to MSCV empty vector control. In MDA-MB-468 cells that have high endogenous levels of ALDH1A3, ALDH1A3 expresion was reduced with ALDH1A3 shRNA1 and compared to scramble shRNA control.
Project description:Analysis of breast cancer MDA-MB-231 cells stably over-expressing SUV420H2, a histone H4K20 methyltransferase. Several genes were significantly up- or down-regulated. Results provide insight into the molecular mechanism by which H4K20me3 contributes to gene expression. SUV420H2 stably over-expressing MDA-MB-231 cells were cloned. Then total RNA was extracted from the SUV420H2 over-expressing cells and the parental MDA-MB-231 cells.
Project description:Analysis of breast cancer MDA-MB-231 cells stably over-expressing SUV420H2, a histone H4K20 methyltransferase. Several genes were significantly up- or down-regulated. Results provide insight into the molecular mechanism by which H4K20me3 contributes to gene expression. SUV420H2 stably over-expressing MDA-MB-231 cells were cloned. Then total RNA was extracted from the SUV420H2 over-expressing cells and the parental MDA-MB-231 cells.
Project description:To determine the differentially expressed miRNAs in MDA-MB-231-GATA3 cells vs. MDA-MB-231-Control cells Pooled polyclonal cells from MDA-MB-231 breast cancer cells +/- GATA3 over-expression were analyzed for miRNA expression
Project description:RNA was isolated from ectopically sFRP1-expressing MDA-MB-231 cells and control MDA-MB-231 cells and as well from tumor lysates arising from these cells as nude mouse xenograft. Gene expression profiles for these samples were investigated using Affymetrix arrays.
Project description:Dicer, RNase III endonuclease, is an essential enzyme in miRNA biogenesis that regulates target gene expression, and it has been reported that aberrant expressions of Dicer associate with the clinical outcomes of patients in various cancers. To explore the miRNA differencial expression regulated by Dicer in MDA-MB-231/E1A cells, the microarray profiling analysis was employed to conduct differentially expressed miRNAs in stable MDA-MB-231/vector, MDA-MB-231/E1A, and MDA-MB-231/E1A/shDicer cells. The four groups including vector control, E1A-expressing and Dicer knockdown in E1A-expressing MDA-MB-231 cells were harvested and RNA were isolated. Two independent experiments were performed for each group.
Project description:We examined whether SATB1 functions as a global gene regulator in order to maintain the aggressive phenotype of the MDA-MB-231 cell line. We compared the gene expression profiles between control_shRNA-MDA-MB-231 cells, which express SATB1 at high levels, and SATB1_shRNA1-MDA-MB-231 in which the level of SATB1 was greatly downregulated by RNAi technology. This comparative studies were performed using two different platforms (Codelink and Affymetrix genechip) with two culture conditions either on plastic dish (2D) or on matrigel (3D) which allows cells to form a breast-like morphology only for non-aggressive cells. Keywords: Comparative studies on Control_shRNA and SATB1_shRNA1 expressing MDA-MB-231 from 2D or 3D culture. We examined control_shRNA-MDA-MB-231 cells and SATB1_shRNA1-MDA-MB-231 cells under two culture condition;on plastic dish(2D culture) and on Matrigel coated dish(3D culture). When SATB1 was depleted by RNAi technology, these normally aggressive cells exhibited normal breast like morphology on 3D. We used two different microarray platforms (Codelink and Affymetrix) to make expression data. Initial analysis of data and cross-platform comparison were performed using Codelink expression analysis and GeneSpring software. We provide ratio for control_shRNA/SATB1_shRNA1-MDA-MB-231 cells for 2D and 3D on this series.
Project description:Alternative splicing—the production of multiple mRNA isoforms from a single gene—is regulated in part by RNA-binding proteins (RBPs). While the RBPs Tra2? and Tra2? have both been implicated in the regulation of alternative splicing, their relative contribution to this process are not well understood. Here we use iCLIP to identify Tra2? target exons in MDA-MB-231 cells. We find that simultaneous—but not individual—depletion of Tra2? and Tra2? induces substantial shifts in the splicing pattern of endogenous Tra2? target exons identified by iCLIP. We next use RNA-seq following joint Tra2 protein depletion to comprehensively identify Tra2 protein-dependent exons in MDA-MB-231 cells. Endogenous Tra2? binding sites were mapped across the MDA-MB-231 cell transcriptome in biological triplicate iCLIP experiments. RNA-seq was performed using three biological replicates of negative control siRNA treated MDA-MB-231 cells and three biological replicates of TRA2A and TRA2B siRNA treated MDA-MB-231 cells.
Project description:RNA was isolated from ectopically sFRP1-expressing MDA-MB-231 cells and control MDA-MB-231 cells and as well from tumor lysates arising from these cells as nude mouse xenograft. Gene expression profiles for these samples were investigated using Affymetrix arrays. Experiment Overall Design: MDA-MB-231 human breast cancer cells were stably transfected with human sFRP1 encoding vector or empty vector as control. After the selection with antibiotics, three clones of MDA-MB-231/sFRP1 and three clones of MDA-MB-231/control were selected. These six clones were cultured individually in DMEM 10% FCS with 1mg/ml G-418. When cells reached 70-80% confluence, RNA was isolated from the cells. In parallel, the three clones of MDA-MB-231/sFRP1 and the three clones of MDA-MB-231/control were pooled respectively. One million of cells from each pool were suspended in 100ul PBS and injected to fat pads of female balb/c nude mice (6 mice were injected with MDA-MB-231/sFRP1 and 5 mice were injected with MDA-MB-231/control) to do a xenograft experiment. A few - several weeks after, mice were sacrificed when tumor reached a certain size, tumors were taken and RNA was isolated using trizol reagent.