Project description:The ParS/ParR two component regulatory system plays important roles for multidrug resistance in Pseudomonas aeruginosa. In this study we report RNA-seq analyses of the transcriptomes of P. aeruginosa PAO1 wild type and par mutants growing in a minimal medium containing 2% casamino acids. This has allowed the quantification of PAO1 transcriptome, and further defines the regulon that is dependent on the ParS/ParR system for expression. Our RNA-seq analysis produced the first estimates of absolute transcript abundance for the 5570 coding genes in P. aeruginosa PAO1. Comparative transcriptomics of P. aeruginosa PAO1 and par mutants identified a total of 464 genes regulated by ParS and ParR. Results also showed that mutations in the parS/parR system abolished the expression of the mexEF-oprN operon by down-regulating the regulatory gene mexS. In addition to affecting drug resistance genes, transcripts of quorum sensing genes (rhlIR and pqsABCDE-phnAB), were significantly up-regulated in both parS and parR mutants. Consistent with these results, a significant portion of the ParS/ParR regulated genes belonged to the MexEF-OprN and quorum sensing regulons. Deletion of par genes also lead to overproduction of phenazines and increased swarming motility, consistent with the up-regulation of quorum sensing genes. Our results established a link among ParS/ParR, MexEF-OprN and quorum sensing in Pseudomonas aeruginosa. Based on these results, we propose a model to illustrate the relationship among these regulatory systems in P. aeruginosa. A total of 9 samples were analyzed in AB medium + 2% casamino acids, Pseudomonas aeruginosa PAO1 wild type strain (3 replicates); Pseudomonas aeruginosa parS mutant (3 replicates); Pseudomonas aeruginosa parR mutant (3 replicates).
Project description:The PqsE enzyme plays a vital role in quorum sensing and virulence in Pseudomonas aeruginosa, yet its enzymatic function is unknown. Here, we identify the protein interaction network of PqsE as well as that of a catalytically dead variant, PqsE(D73A) in P. aeruginosa PA14. Our analyses identify proteins that interact with PqsE that are independent of and that depend on PqsE catalytic function. One such catalysis-independent interaction is with the quorum-sensing regulator, RhlR, consistent with our previous work. We also characterize the PqsE interaction network in a delta rhlR P. aeruginosa PA14 strain and identify additional proteins as PqsE-interactors.
Project description:The ParS/ParR two component regulatory system plays important roles for multidrug resistance in Pseudomonas aeruginosa. In this study we report RNA-seq analyses of the transcriptomes of P. aeruginosa PAO1 wild type and par mutants growing in a minimal medium containing 2% casamino acids. This has allowed the quantification of PAO1 transcriptome, and further defines the regulon that is dependent on the ParS/ParR system for expression. Our RNA-seq analysis produced the first estimates of absolute transcript abundance for the 5570 coding genes in P. aeruginosa PAO1. Comparative transcriptomics of P. aeruginosa PAO1 and par mutants identified a total of 464 genes regulated by ParS and ParR. Results also showed that mutations in the parS/parR system abolished the expression of the mexEF-oprN operon by down-regulating the regulatory gene mexS. In addition to affecting drug resistance genes, transcripts of quorum sensing genes (rhlIR and pqsABCDE-phnAB), were significantly up-regulated in both parS and parR mutants. Consistent with these results, a significant portion of the ParS/ParR regulated genes belonged to the MexEF-OprN and quorum sensing regulons. Deletion of par genes also lead to overproduction of phenazines and increased swarming motility, consistent with the up-regulation of quorum sensing genes. Our results established a link among ParS/ParR, MexEF-OprN and quorum sensing in Pseudomonas aeruginosa. Based on these results, we propose a model to illustrate the relationship among these regulatory systems in P. aeruginosa.
Project description:Purpose: The purpose of this study was to investigate the effect of quorum sensing on phage infection. Methods: We constructed the lasR gene knockout strain of Pseudomonas aeruginosa PAO1 and performed transcriptome sequencing.
Project description:Pseudomonas aeruginosa is a common pathogen in the lungs of the cystic fibrosis patients. As infection develops the organism progressively adapts to its environment and its mode of pathogenesis alters, frequently including the loss of quorum sensing (QS) regulated virulence factors. We used microarrays to determine genomic differences by comparative genome hybridisation between two P. aeruginosa isolates from CF patients, one of which exhibited an active quorum sensing (QS) system (UUPA38) typical of early acute infection while the other was QS-compromised (UUPA85) typical of chronic CF-adapted infection.
Project description:Pseudomonas aeruginosa is a common pathogen in the lungs of the cystic fibrosis patients. As infection develops the organism progressively adapts to its environment and its mode of pathogenesis alters, frequently including the loss of quorum sensing regulated virulence factors. We used microarrays to detail differences between two P. aeruginosa isolates from CF patients, one of which (UUPA38) exhibited an active quorum sensing system (QS+) typical of early acute infection while the other (UUPA85) was QS-compromised (QS-) typical of chronic CF-adapted infection.
Project description:Quorum sensing, a cell-to-cell communication system based on small signal molecules, is employed by the human pathogen Pseudomonas aeruginosa to regulate virulence and biofilm development. Moreover, regulation by small trans-encoded RNAs has become a focal issue in virulence gene expression of bacterial pathogens. In this study, we have identified the small RNA PhrS as an activator of PqsR synthesis, one of the key quorum sensing regulators in P. aeruginosa. Genetic studies revealed a novel mode of regulation by a sRNA, whereby PhrS uses a base-pairing mechanism to activate a short upstream open reading frame to which the pqsR gene is translationally coupled. Expression of phrS is induced by the oxygen-responsive regulator ANR when the oxygen supply decreases. Thus, PhrS is the first bacterial sRNA that provides a regulatory link between oxygen availability and quorum sensing, which may impact on oxygen-limited growth in P. aeruginosa biofilms. Keywords: genetic modification Comparative transcriptome analysis with the delta-phrS strains PAO6671(pJT19) and PAO6671(pJTphrS), whereby the first strain harboured the parental vector and the latter a plasmid-borne inducible phrS gene
Project description:Pseudomonas aeruginosa is a common pathogen in the lungs of the cystic fibrosis patients. As infection develops the organism progressively adapts to its environment and its mode of pathogenesis alters, frequently including the loss of quorum sensing (QS) regulated virulence factors. We used microarrays to determine genomic differences by comparative genome hybridisation between two P. aeruginosa isolates from CF patients, one of which exhibited an active quorum sensing (QS) system (UUPA38) typical of early acute infection while the other was QS-compromised (UUPA85) typical of chronic CF-adapted infection. Genomic DNA was harvested from the two isolates, fragmented using DNase I and hybridized to Affymetrix microarrays. We aimed to identify genes not present in both isolates.
Project description:Quorum sensing, a cell-to-cell communication system based on small signal molecules, is employed by the human pathogen Pseudomonas aeruginosa to regulate virulence and biofilm development. Moreover, regulation by small trans-encoded RNAs has become a focal issue in virulence gene expression of bacterial pathogens. In this study, we have identified the small RNA PhrS as an activator of PqsR synthesis, one of the key quorum sensing regulators in P. aeruginosa. Genetic studies revealed a novel mode of regulation by a sRNA, whereby PhrS uses a base-pairing mechanism to activate a short upstream open reading frame to which the pqsR gene is translationally coupled. Expression of phrS is induced by the oxygen-responsive regulator ANR when the oxygen supply decreases. Thus, PhrS is the first bacterial sRNA that provides a regulatory link between oxygen availability and quorum sensing, which may impact on oxygen-limited growth in P. aeruginosa biofilms. Keywords: genetic modification
Project description:We report a next-generation sequencing of total RNA from Pseudomonas aeruginosa PAO1 grown in presence of rosmarinic acid (RA) 100mM. Data analysis in comparison with cells grown in absence of RA revealed that the plant compound RA induces a broad transcriptional response in this bacterium, quite similar to the quorum sensing response.