Project description:SILAC based protein correlation profiling using size exclusion of protein complexes derived from Mus musculus tissues (Heart, Liver, Lung, Kidney, Skeletal Muscle, Thymus)
Project description:SILAC based protein correlation profiling using size exclusion of protein complexes derived from seven Mus musculus tissues (Heart, Brain, Liver, Lung, Kidney, Skeletal Muscle, Thymus)
Project description:α-myosin heavy chain promoter controlled MerCreMer expression enables conditional, cardiomyocyte specific and tamoxifen dependent gene inactivation of floxed genes. Administration of tamoxifen has been linked to development of acute and transient cardiomyopathy. The mechanism for this is unknown. We used microarrays to sort out factors relevant for adverse effects following tamoxifen dependent gene inactivation, to develop a protocol with minimal adverse effects, and to identify the most proper control animals. Mus musculus Tg(αMHC-MerCreMer) and wild type were sacrificed 4 days after 1 or 4 consecutive days of 40 mg/kg tamoxifen injected intraperitoneally, or after corresponding control injection treatment.
Project description:Comparison of gene expression profiles from Mus musculus muscle after physical exercise (treadmill). The RNA-seq data comprise 4 groups: 2 strains, each w/ and w/o physical exercise. Jena Centre for Systems Biology of Ageing - JenAge (www.jenage.de)
Project description:The aim of the study was to investigate whether the trefoil peptide genes, in concerted action with a miRNA regulatory network, were contributing to nutritional maintrenance. Using a Tff3 knock-out mouse model, 21 specific miRNAs were noted to be significantly deregulated when compared to the wild type strain. n = 6 mus musculus wild type samples and n = 6 knock-down experiments have been screened for a currently known mus musculus miRNAs and validated by TaqMan
Project description:The aim of the study was to investigate whether the trefoil peptide genes, in concerted action with a miRNA regulatory network, were contributing to nutritional maintrenance. Using a Tff2 knock-out mouse model, 48 specific miRNAs were noted to be significantly deregulated when compared to the wild type strain. n = 6 mus musculus wild type samples and n = 6 knock-down experiments have been screened for a currently known mus musculus miRNAs and validated by TaqMan