Project description:Bifidobacteria dominate the composition of the neonatal gut microbiota in the first number of weeks following birth. A number of species in particular are found with a significantly higher frequency in the microbiome of breastfed infants, owing to their ability to rely on Human Milk Oligosacchraides (HMOs) as their sole carbohydrate substrate; namely B. bifidum, B. longum spp. infantis and B. breve. Bifidobacterium kashiwanohense is a species that has been isolated previously only from the faeces of infants, but extremely infrequently at that. Relatively little is currently known about the species itself, let alone the metabolic pathways that allow it to successfully establish a population in the infant gut. We have isolated a novel strain of B. kashiwanohense from the faeces of a breastfed infant on the basis of its ability to utilise the HMO component fucosyllactose as its sole carbohydrate source. In this study, we read and annotate the full genome sequence of this novel strain, and use the data obtained to direct our further experimental analysis of fucosyllactose metabolism in B. kashiwanohense. Using transcriptomic and growth analysis results, we identify the genes responsible for B. kashiwanohense to utilise fucosyllactose, and employ a combination of cloning, in vitro hydrolysis assays, and further, recombinant transcriptomic and growth assays to elucidate the pathway for fucosyllactose metabolism in B. kashiwanohense, as well as revealing insight into fucosyllactose and fucose metabolism in Bifidobacteria as whole.
Project description:Bifidobacterium longum subsp. infantis is a bacterial commensal that colonizes the breast-fed infant gut where it utilizes indigestible components delivered in human milk. Accordingly, human milk contains several non-protein nitrogenous molecules, including urea at high abundance. This project investigates the degree to which urea is utilized as a primary nitrogen source by Bifidobacterium longum subsp. infantis and incorporation of hydrolysis products into the expressed proteome.
Project description:The purpose of this project was to determine the whole transcriptome response of Bifidobacterium longum subsp. infantis to human milk urea compared to complex nitrogen and L-cysteine.
Project description:The purpose of this project was to determine the whole transcriptome response of Bifidobacterium longum subsp. Infantis to pooled and individual human milk oligosaccharides (HMO) relative to lactose