Project description:Expression profiling of progenitor cells from human supraclavicular and subcutaneous adipose tissue. Studies in animal models revealed that brown and white adipocytes derive from different progenitor cells. Molecular characteristics of these cells have not been investigated in detail in humans. Results provide evidence into the molecular basis of the difference of white and brown progenitor cells in humans. Progenitor cells from paired samples of supraclavicular and subcutaneous of six patients undergoing neck surgery were isolated by collagenase digestion and subsequently transferred to cell culture. After reaching subconfluency (7 days), we harvested RNA and analyzed differencens in gene expression by microarray analysis.
Project description:To identify candidates of interest that were more highly expressed in BAT than WAT, we conducted RNAseq in human primary brown and white adipocytes. Adipose tissue was obtained from the central compartment of the neck, superior to the clavicle and deep to the lateral thyroid lobe either adjacent to the longus colli muscle or to the oesophagus (brown adipose tissue) and more superficially from the subcutaneous neck tissue (white adipose tissue). The stromal vascular fraction was isolated and cultured as described (Ramage, Akyol et al. 2016 doi: 10.1016/j.cmet.2016.06.011). Following differentiation, cells were cultured in serum-stripped medium for 48 hours prior to RNA extraction and subsequent bulk RNA-seq.
Project description:Three different progenitor cell subsets in subcutaneous and visceral adipose tissues derived from 5 obese patients were subjected to AmpliSeq transcriptome profiling. Transcriptomic profiles were analyzed to compare progenitor cell subsets and the impact of subcutaneous and visceral adipose tissue location.
Project description:To study the changes in the proteomics profile of of subcutaneous adipose tissue of growing high-fat diet–fed rats, TMT was used as the labeling strategy for comparative quantitative proteomic analysis.
Project description:The primary objective of the study was to investigate the uncoupling protein-1 (UCP1) associated features of human epicardial adipose tissue (eAT) using next generation deep sequencing. In addition, paired mediastinal adipose tissue (mAT) and subcutaneous adipose tissue (sAT) samples colleced from patients undergoing cardic surgeries at our center were included in the study.