ABSTRACT: Expression data from human brain anterior cingulate cortex - including control samples and samples with major depression disorders (20 samples MD2_ACC)
Project description:Expression data from human brain anterior cingulate cortex - including control samples and samples with major depression disorders (24 samples BA25_M)
Project description:Expression data from human brain anterior cingulate cortex - including control samples and samples with major depression disorders (26 samples BA25_F)
Project description:Expression data from human brain anterior cingulate cortex - including control samples and samples with major depression disorders (32 samples MD1_ACC)
Project description:Expression data from human brain anterior cingulate cortex - including control samples and samples with major depression disorders (50 samples MD3_ACC)
Project description:Major depressive disorder is a heterogeneous illness with a mostly uncharacterized pathology. Large scale gene expression (transcriptome) analysis and genome-wide association studies (GWAS) for single nucleotide polymorphisms have generated a considerable amount of gene- and disease-related information, but heterogeneity and various sources of noise have limited the discovery of disease mechanisms. As systematic dataset integration is becoming essential, we developed methods and performed meta-clustering of gene coexpression links in 11 transcriptome studies from postmortem brains of human subjects with major depressive disorder (MDD) and non-psychiatric control subjects. We next sought enrichment in the top 50 meta-analyzed coexpression modules for genes otherwise identified by GWAS for various sets of disorders. One coexpression module of 88 genes was consistently and significantly associated with GWAS for MDD, other neuropsychiatric disorders and brain functions, and for medical illnesses with elevated clinical risk of depression, but not for other diseases (See publication for details). 20 total samples in 10 pairs were analyzed in postmortem tissue from the anterior cingulate cortex.
Project description:Schizophrenia (SZ) and bipolar disorder (BD) are severe neuropsychiatric disorders with serious impact on patients, together termed major psychosis. Recently, long intergenic non-coding RNAs (lincRNAs) were reported to play important roles in mental diseases. However, little was known about their molecular mechanism in pathogenesis of SZ and BD. Here, we performed RNA sequencing on 82 post-mortem brain tissues from three brain regions (orbitofrontal cortex (BA11), anterior cingulate cortex (BA24) and dorsolateral prefrontal cortex (BA9)) of patients with SZ and BD and control subjects, generating over one billion reads. We characterized lincRNA transcriptome in the three brain regions and identified 20 differentially expressed lincRNAs (DELincRNAs) in BA11 for BD, 34 and 1 in BA24 and BA9 for SZ, respectively. Our results showed that these DELincRNAs exhibited brain region-specific patterns. Applying weighted gene co-expression network analysis, we revealed that DELincRNAs together with other genes can function as modules to perform different functions in different brain regions, such as immune system development in BA24 and oligodendrocyte differentiation in BA9. Additionally, we found that DNA methylation alteration could partly explain the dysregulation of lincRNAs, some of which could function as enhancers in the pathogenesis of major psychosis. Together, we performed systematical characterization of dysfunctional lincRNAs in multiple brain regions of major psychosis, which provided a valuable resource to understand their roles in SZ and BD pathology and helped to discover novel biomarkers. RNA sequencing of 82 brain samples including each of 19 from BA9 and BA24 and 44 from BA11. We performed RNA sequencing on three brain regions namely the BA11 (part of orbitofrontal cortex), BA24 (part of anterior cingulate) and BA9 (part of dorsolateral prefrontal cortex) from SZ and BD patients and psychiatrically normal individuals.In summary, there were 44 BA11 samples from 16 SZ, 16 BD and 12 control subjects, and 19 BA24 and 19 BA9 samples from the same subjects including 6 SZ, 7 BD and 6 controls.
Project description:We used the sciatic nerve cuffing model to induce neuropathic pain and depression in mice. Gene expression was studied in the anterior cingulate cortex, a brain region crucial for mood disorders. We studied gene expression after 2 and 8 weeks in cuff or sham operated mice. The 8 week time point corresponded to the presence of both nociceptive and anxiodepressive-like phenotype. The 2 week time point correspond to the animals displaying no anxiodepressive phenotype.
Project description:Major depressive disorder is a heterogeneous illness with a mostly uncharacterized pathology. Large scale gene expression (transcriptome) analysis and genome-wide association studies (GWAS) for single nucleotide polymorphisms have generated a considerable amount of gene- and disease-related information, but heterogeneity and various sources of noise have limited the discovery of disease mechanisms. As systematic dataset integration is becoming essential, we developed methods and performed meta-clustering of gene coexpression links in 11 transcriptome studies from postmortem brains of human subjects with major depressive disorder (MDD) and non-psychiatric control subjects. We next sought enrichment in the top 50 meta-analyzed coexpression modules for genes otherwise identified by GWAS for various sets of disorders. One coexpression module of 88 genes was consistently and significantly associated with GWAS for MDD, other neuropsychiatric disorders and brain functions, and for medical illnesses with elevated clinical risk of depression, but not for other diseases (See publication for details). 50 total samples in 25 pairs were analyzed in postmortem tissue from the anterior cingulate cortex.
Project description:Major depressive disorder is a heterogeneous illness with a mostly uncharacterized pathology. Large scale gene expression (transcriptome) analysis and genome-wide association studies (GWAS) for single nucleotide polymorphisms have generated a considerable amount of gene- and disease-related information, but heterogeneity and various sources of noise have limited the discovery of disease mechanisms. As systematic dataset integration is becoming essential, we developed methods and performed meta-clustering of gene coexpression links in 11 transcriptome studies from postmortem brains of human subjects with major depressive disorder (MDD) and non-psychiatric control subjects. We next sought enrichment in the top 50 meta-analyzed coexpression modules for genes otherwise identified by GWAS for various sets of disorders. One coexpression module of 88 genes was consistently and significantly associated with GWAS for MDD, other neuropsychiatric disorders and brain functions, and for medical illnesses with elevated clinical risk of depression, but not for other diseases (See publication for details). 32 total samples in 16 pairs were analyzed in postmortem tissue from the anterior cingulate cortex.
Project description:Major depressive disorder is a heterogeneous illness with a mostly uncharacterized pathology. Large scale gene expression (transcriptome) analysis and genome-wide association studies (GWAS) for single nucleotide polymorphisms have generated a considerable amount of gene- and disease-related information, but heterogeneity and various sources of noise have limited the discovery of disease mechanisms. As systematic dataset integration is becoming essential, we developed methods and performed meta-clustering of gene coexpression links in 11 transcriptome studies from postmortem brains of human subjects with major depressive disorder (MDD) and non-psychiatric control subjects. We next sought enrichment in the top 50 meta-analyzed coexpression modules for genes otherwise identified by GWAS for various sets of disorders. One coexpression module of 88 genes was consistently and significantly associated with GWAS for MDD, other neuropsychiatric disorders and brain functions, and for medical illnesses with elevated clinical risk of depression, but not for other diseases (See publication for details). 26 total samples in 13 pairs were analyzed in postmortem tissue from the anterior cingulate cortex.