Project description:BackgroundMatings between different Saccharomyces sensu stricto yeast species produce sexually sterile hybrids, so individuals should avoid mating with other species. Any mechanism that reduces the frequency of interspecific matings will confer a selective advantage. Here we test the ability of two closely-related Saccharomyces sensu stricto species to select their own species as mates and avoid hybridisation.ResultsWe set up mate choice tests, using five independently isolated pairs of species, in which individual germinating spores were presented with the opportunity to mate either with a germinating spore of their own species or with a germinating spore of the other species. For all five strain pairs, whether a S. cerevisiae or S. paradoxus occupies the role of "chooser" strain, the level of hybridisation that is observed between the two species is significantly lower than would be expected if mates were selected at random. We also show that, overall, S. cerevisiae exhibited a stronger own-species preference than S. paradoxus.ConclusionPrezygotic reproductive isolation is well known in higher organisms but has been largely overlooked in yeast, an important model microbe. Here we present the first report of prezygotic reproductive isolation in Saccharomyces. Prezygotic reproductive isolation may be important in yeast speciation or yeast species cohesion, and may have evolved to prevent wasted matings between different species. Whilst yeast has long been used as a genetic model system, little is known about yeast in the wild. Our work sheds light on an interesting aspect of yeast natural behaviour: their ability to avoid costly interspecific matings.
Project description:We determined that extrachromosomal 2μ plasmid was present in 67 of the Saccharomyces cerevisiae 100-genome strains; in addition to variation in the size and copy number of 2μ, we identified three distinct classes of 2μ. We identified 2μ presence/absence and class associations with populations, clinical origin and nuclear genotypes. We also screened genome sequences of S. paradoxus, S. kudriavzevii, S. uvarum, S. eubayanus, S. mikatae, S. arboricolus and S. bayanus strains for both integrated and extrachromosomal 2μ. Similar to S. cerevisiae, we found no integrated 2μ sequences in any S. paradoxus strains. However, we identified part of 2μ integrated into the genomes of some S. uvarum, S. kudriavzevii, S. mikatae and S. bayanus strains, which were distinct from each other and from all extrachromosomal 2μ. We identified extrachromosomal 2μ in one S. paradoxus, one S. eubayanus, two S. bayanus and 13 S. uvarum strains. The extrachromosomal 2μ in S. paradoxus, S. eubayanus and S. cerevisiae were distinct from each other. In contrast, the extrachromosomal 2μ in S. bayanus and S. uvarum strains were identical with each other and with one of the three classes of S. cerevisiae 2μ, consistent with interspecific transfer.
Project description:The phosphorylation status of a protein is highly regulated and is determined by the opposing activities of protein kinases and protein phosphatases within the cell. While much is known about the protein kinases found in Saccharomyces cerevisiae, the protein phosphatases are much less characterized. Of the 127 protein kinases in yeast, over 90% are in the same evolutionary lineage. In contrast, protein phosphatases are fewer in number (only 43 have been identified in yeast) and comprise multiple, distinct evolutionary lineages. Here we review the protein phosphatase families of yeast with regard to structure, catalytic mechanism, regulation, and signal transduction participation.
Project description:Ubiquitination is an important post-translational modification involved in diverse biological processes. Therefore, genomewide representation of the ubiquitination system for a species is important.SCUD is a web-based database for the ubiquitination system in Saccharomyces cerevisiae (Baker's yeast). We first searched for all the known enzymes involved in the ubiquitination process in yeast, including E1, E2, E3, and deubiquitination enzymes. Then, ubiquitinated substrates were collected by literature search. Especially, E3 and deubiquitination enzymes are classified into classes and subclasses by their shared domains and unique functions. As a result, 42 different E3 enzymes were grouped into corresponding classes and subclasses, and 940 ubiquitinated substrates including mutant substrates were identified. All the enzyme and substrate information are interconnected by hyperlinks, which makes it easy to view the enzyme-specific ubiquitination information.This database aims to represent a comprehensive yeast ubiquitination system, and is easily expandable with the further experimental data. We expect that this database will be useful for the research on the ubiquitination systems of other higher organisms. SCUD is accessible at http://scud.kaist.ac.kr.
Project description:BackgroundMobile Genetic Elements (MGEs) are selfish DNA integrated in the genomes. Their detection is mainly based on consensus-like searches by scanning the investigated genome against the sequence of an already identified MGE. Mobilomics aims at discovering all the MGEs in a genome and understanding their dynamic behavior: The data for this kind of investigation can be provided by comparative genomics of closely related organisms. The amount of data thus involved requires a strong computational effort, which should be alleviated.ResultsOur approach proposes to exploit the high similarity among homologous chromosomes of different strains of the same species, following a progressive comparative genomics philosophy. We introduce a software tool based on our new fast algorithm, called regender, which is able to identify the conserved regions between chromosomes. Our case study is represented by a unique recently available dataset of 39 different strains of S.cerevisiae, which regender is able to compare in few minutes. By exploring the non-conserved regions, where MGEs are mainly retrotransposons called Tys, and marking the candidate Tys based on their length, we are able to locate a priori and automatically all the already known Tys and map all the putative Tys in all the strains. The remaining putative mobile elements (PMEs) emerging from this intra-specific comparison are sharp markers of inter-specific evolution: indeed, many events of non-conservation among different yeast strains correspond to PMEs. A clustering based on the presence/absence of the candidate Tys in the strains suggests an evolutionary interconnection that is very similar to classic phylogenetic trees based on SNPs analysis, even though it is computed without using phylogenetic information.ConclusionsThe case study indicates that the proposed methodology brings two major advantages: (a) it does not require any template sequence for the wanted MGEs and (b) it can be applied to infer MGEs also for low coverage genomes with unresolved bases, where traditional approaches are largely ineffective.
Project description:Knowledge of the subcellular localization of proteins is indispensable to understand their physiological roles. In the past decade, 18 studies have been performed to analyze the protein content of isolated organelles from Saccharomyces cerevisiae. Here, we integrate the data sets and compare them with other large scale studies on protein localization and abundance. We evaluate the completeness and reliability of the organelle proteomics studies. Reliability depends on the purity of the organelle preparations, which unavoidably contain (small) amounts of contaminants from different locations. Quantitative proteomics methods can be used to distinguish between true organellar constituents and contaminants. Completeness is compromised when loosely or dynamically associated proteins are lost during organelle preparation and also depends on the sensitivity of the analytical methods for protein detection. There is a clear trend in the data from the 18 organelle proteomics studies showing that proteins of low abundance frequently escape detection. Proteins with unknown function or cellular abundance are also infrequently detected, indicating that these proteins may not be expressed under the conditions used. We discuss that the yeast organelle proteomics studies provide powerful lead data for further detailed studies and that methodological advances in organelle preparation and in protein detection may help to improve the completeness and reliability of the data.
Project description:Large-scale transitions in genome size from tetraploid to diploid were observed during a previous 1800-generation evolution experiment in Saccharomyces cerevisiae. Whether the transitions occurred via a one-step process (tetraploid to diploid) or through multiple steps (through ploidy intermediates) remained unclear. To provide insight into the mechanism involved, we investigated whether triploid-sized cells sampled from the previous experiment could also undergo ploidy loss. A batch culture experiment was conducted for approximately 200 generations, starting from four triploid-sized colonies and one contemporaneous tetraploid-sized colony. Ploidy reduction towards diploidy was observed in both triploid and tetraploid lines. Comparative genomic hybridization indicated the presence of aneuploidy in both the founder and the evolved colonies. The specific aneuploidies involved suggest that chromosome loss was not haphazard but that nearly full sets of chromosomes were lost at once, with some additional chromosome mis-segregation events. These results suggest the existence of a mitotic mechanism allowing the elimination of an entire set of chromosomes in S. cerevisiae, thereby reducing the ploidy level.
Project description:We performed a comprehensive approach to determine the proteome of Saccharomyces cerevisiae mitochondria. The proteins of highly pure yeast mitochondria were separated by several independent methods and analyzed by tandem MS. From >20 million MS spectra, 750 different proteins were identified, indicating an involvement of mitochondria in numerous cellular processes. All known components of the oxidative phosphorylation machinery, the tricarboxylic acid cycle, and the stable mitochondria-encoded proteins were found. Based on the mitochondrial proteins described in the literature so far, we calculate that the identified proteins represent approximately 90% of all mitochondrial proteins. The function of a quarter of the identified proteins is unknown. The mitochondrial proteome will provide an important database for the analysis of new mitochondrial and mitochondria-associated functions and the characterization of mitochondrial diseases.
Project description:Compared to protein-coding sequences, the evolution of noncoding sequences and the selective constraints placed on these sequences is not well characterized. To compare the evolution of coding and noncoding sequences, we have conducted a survey for DNA polymorphism at five randomly chosen loci among a diverse collection of 81 strains of Saccharomyces cerevisiae. Average rates of both polymorphism and divergence are 40% lower at noncoding sites and 90% lower at nonsynonymous sites in comparison to synonymous sites. Although noncoding and coding sequences show substantial variability in ratios of polymorphism to divergence, two of the loci, MLS1 and PDR10, show a higher rate of polymorphism at noncoding compared to synonymous sites. The high rate of polymorphism is not accompanied by a high rate of divergence and is limited to a few small regions. These hypervariable regions include sites with three segregating bases at a single site and adjacent polymorphic sites. We show that this clustering of polymorphic sites is significantly greater than one would expect on the basis of the spacing between polymorphic fourfold degenerate sites. Although hypervariable noncoding sequences could result from selection on regulatory mutations, they could also result from transient mutational hotspots.
Project description:Circadian timing is a fundamental biological process, underlying cellular physiology in animals, plants, fungi, and cyanobacteria. Circadian clocks organize gene expression, metabolism, and behavior such that they occur at specific times of day. The biological clocks that orchestrate these daily changes confer a survival advantage and dominate daily behavior, for example, waking us in the morning and helping us to sleep at night. The molecular mechanism of circadian clocks has been sketched out in genetic model systems from prokaryotes to humans, revealing a combination of transcriptional and posttranscriptional pathways, but the clock mechanism is far from solved. Although Saccharomyces cerevisiae is among the most powerful genetic experimental systems and, as such, could greatly contribute to our understanding of cellular timing, it still remains absent from the repertoire of circadian model organisms. Here, we use continuous cultures of yeast, establishing conditions that reveal characteristic clock properties similar to those described in other species. Our results show that metabolism in yeast shows systematic circadian entrainment, responding to cycle length and zeitgeber (stimulus) strength, and a (heavily damped) free running rhythm. Furthermore, the clock is obvious in a standard, haploid, auxotrophic strain, opening the door for rapid progress into cellular clock mechanisms.