Project description:Centrosome amplification has long been recognized as a feature of human tumors, however its role in tumorigenesis remains unclear. Centrosome amplification is poorly tolerated by non-transformed cells, and, in the absence of selection, extra centrosomes are spontaneously lost. Thus, the high frequency of centrosome amplification, particularly in more aggressive tumors, raises the possibility that extra centrosomes could, in some contexts, confer advantageous characteristics that promote tumor progression. Using a three-dimensional model system and other approaches to culture human mammary epithelial cells, we find that centrosome amplification triggers cell invasion. This invasive behavior is similar to that induced by overexpression of the breast cancer oncogene ErbB2 and indeed enhances invasiveness triggered by ErbB2. We show that, through increased centrosomal microtubule nucleation, centrosome amplification increases Rac1 activity, which disrupts normal cell-cell adhesion and promotes invasion. These findings demonstrate that centrosome amplification, a structural alteration of the cytoskeleton, can promote features of malignant transformation.
Project description:Centrosome amplification has long been recognized as a feature of human tumors, however its role in tumorigenesis remains unclear. Centrosome amplification is poorly tolerated by non-transformed cells, and, in the absence of selection, extra centrosomes are spontaneously lost. Thus, the high frequency of centrosome amplification, particularly in more aggressive tumors, raises the possibility that extra centrosomes could, in some contexts, confer advantageous characteristics that promote tumor progression. Using a three-dimensional model system and other approaches to culture human mammary epithelial cells, we find that centrosome amplification triggers cell invasion. This invasive behavior is similar to that induced by overexpression of the breast cancer oncogene ErbB2 and indeed enhances invasiveness triggered by ErbB2. We show that, through increased centrosomal microtubule nucleation, centrosome amplification increases Rac1 activity, which disrupts normal cell-cell adhesion and promotes invasion. These findings demonstrate that centrosome amplification, a structural alteration of the cytoskeleton, can promote features of malignant transformation. genome-wide human SNP 6.0 arrays from Affymetrix was used to determine the copy number changes of MCF10A cells with extra centrosomes or depleted of MCAK after grown 4 days in 3-D cultures
Project description:Centrosome amplification induces proliferation arrest and cell invasion. The fate of centrosome amplification cells are studied here.
Project description:We have recently reported that type 2 diabetes promotes cell centrosome amplification via enhancing the expression, biding and centrosome translocation of ROCK1/14-3-3σ complex. In the present functional proteomic study, we further investigated the molecular pathways underlying the centrosome amplification using colon cancer HCT116 cells as experimental model. We found that treatment of cells with high glucose, insulin and palmitic acid triggered the centrosome amplification and increased the expressions of PCNA, NPM and 14-3-3σ. Individual knockdown of PCNA, NPM or 14-3-3σ inhibited the centrosome amplification. Knockdown of PCNA inhibited the treatment-increased expression of ROCK1, while knockdown of ROCK1 did not affect the PCNA expression. High glucose, insulin and palmitic acid also increased the expressions of JNK1 and Stat3, individual knockdown of which up-regulated the treatment-increased expression of 14-3-3σ and promoted the centrosome amplification. In contrast, over-expression of JNK1 inhibited the centrosome amplification. Knockdown of Stat3 enhanced the centrosome translocation of 14-3-3σ. Moreover, we showed that knockdown of JNK1 inhibited the treatment-increased expression of Stat3, but not the other way round. Knockdown of PCNA, JNK or Stat3 did not have an effect on NPM and vice versa. In conclusion, our results suggest that PCNA and JNK1-Stat3 pathways respectively promotes and feedback inhibits the centrosome amplification by targeting at the ROCK1/14-3-3σ complex, and NPM serves as an independent signal for the centrosome amplification.
Project description:Kynureninase is a member of a large family of catalytically diverse but structurally homologous pyridoxal 5'-phosphate (PLP) dependent enzymes known as the aspartate aminotransferase superfamily or alpha-family. The Homo sapiens and other eukaryotic constitutive kynureninases preferentially catalyze the hydrolytic cleavage of 3-hydroxy-l-kynurenine to produce 3-hydroxyanthranilate and l-alanine, while l-kynurenine is the substrate of many prokaryotic inducible kynureninases. The human enzyme was cloned with an N-terminal hexahistidine tag, expressed, and purified from a bacterial expression system using Ni metal ion affinity chromatography. Kinetic characterization of the recombinant enzyme reveals classic Michaelis-Menten behavior, with a Km of 28.3 +/- 1.9 microM and a specific activity of 1.75 micromol min-1 mg-1 for 3-hydroxy-dl-kynurenine. Crystals of recombinant kynureninase that diffracted to 2.0 A were obtained, and the atomic structure of the PLP-bound holoenzyme was determined by molecular replacement using the Pseudomonas fluorescens kynureninase structure (PDB entry 1qz9) as the phasing model. A structural superposition with the P. fluorescens kynureninase revealed that these two structures resemble the "open" and "closed" conformations of aspartate aminotransferase. The comparison illustrates the dynamic nature of these proteins' small domains and reveals a role for Arg-434 similar to its role in other AAT alpha-family members. Docking of 3-hydroxy-l-kynurenine into the human kynureninase active site suggests that Asn-333 and His-102 are involved in substrate binding and molecular discrimination between inducible and constitutive kynureninase substrates.
Project description:As the evolution of miRNA genes has been found to be one of the important factors in formation of the modern type of man, we performed a comparative analysis of the evolution of miRNA genes in two archaic hominines, Homo sapiens neanderthalensis and Homo sapiens denisova, and elucidated the expression of their target mRNAs in bain.A comparative analysis of the genomes of primates, including species in the genus Homo, identified a group of miRNA genes having fixed substitutions with important implications for the evolution of Homo sapiens neanderthalensis and Homo sapiens denisova. The mRNAs targeted by miRNAs with mutations specific for Homo sapiens denisova exhibited enhanced expression during postnatal brain development in modern humans. By contrast, the expression of mRNAs targeted by miRNAs bearing variations specific for Homo sapiens neanderthalensis was shown to be enhanced in prenatal brain development.Our results highlight the importance of changes in miRNA gene sequences in the course of Homo sapiens denisova and Homo sapiens neanderthalensis evolution. The genetic alterations of miRNAs regulating the spatiotemporal expression of multiple genes in the prenatal and postnatal brain may contribute to the progressive evolution of brain function, which is consistent with the observations of fine technical and typological properties of tools and decorative items reported from archaeological Denisovan sites. The data also suggest that differential spatial-temporal regulation of gene products promoted by the subspecies-specific mutations in the miRNA genes might have occurred in the brains of Homo sapiens denisova and Homo sapiens neanderthalensis, potentially contributing to the cultural differences between these two archaic hominines.
Project description:PurposeWe investigated the evidence of recent positive selection in the human phototransduction system at single nucleotide polymorphism (SNP) and gene level.MethodsSNP genotyping data from the International HapMap Project for European, Eastern Asian, and African populations was used to discover differences in haplotype length and allele frequency between these populations. Numeric selection metrics were computed for each SNP and aggregated into gene-level metrics to measure evidence of recent positive selection. The level of recent positive selection in phototransduction genes was evaluated and compared to a set of genes shown previously to be under recent selection, and a set of highly conserved genes as positive and negative controls, respectively.ResultsSix of 20 phototransduction genes evaluated had gene-level selection metrics above the 90th percentile: RGS9, GNB1, RHO, PDE6G, GNAT1, and SLC24A1. The selection signal across these genes was found to be of similar magnitude to the positive control genes and much greater than the negative control genes.ConclusionsThere is evidence for selective pressure in the genes involved in retinal phototransduction, and traces of this selective pressure can be demonstrated using SNP-level and gene-level metrics of allelic variation. We hypothesize that the selective pressure on these genes was related to their role in low light vision and retinal adaptation to ambient light changes. Uncovering the underlying genetics of evolutionary adaptations in phototransduction not only allows greater understanding of vision and visual diseases, but also the development of patient-specific diagnostic and intervention strategies.
Project description:Centrosomal protein 120 (CEP120) is a 120kD centrosome protein that plays an important role in centrosome replication. Overexpression of CEP120 can lead to centrosome amplification, which is closely associated with tumorigenesis and development. However, there are no reports on the relationship between CEP120 and tumors. In our study, overexpression of CEP120 promoted centrosome amplification in gastric cancer (GC), and the role of CEP120 in promoting GC progression was demonstrated in vitro and in vivo. We demonstrated that CEP120 promotes centrosome amplification and GC progression by promoting the expression and centrosome aggregation of the deubiquitinating enzyme USP54, maintaining the stability of PLK4 and reducing its ubiquitination degradation. In conclusion, the CEP120-USP54-PLK4 axis may play an important role in promoting centrosome amplification and GC progression, thus providing a potential therapeutic target for GC.
Project description:Cortical thickness has been investigated since the beginning of the 20th century, but we do not know how similar the cortical thickness profiles among humans are. In this study, the local similarity of cortical thickness profiles was investigated using sliding window methods. Here, we show that approximately 5% of the cortical thickness profiles are similarly expressed among humans while 45% of the cortical thickness profiles show a high level of heterogeneity. Therefore, heterogeneity is the rule, not the exception. Cortical thickness profiles of somatosensory homunculi and the anterior insula are consistent among humans, while the cortical thickness profiles of the motor homunculus are more variable. Cortical thickness profiles of homunculi that code for muscle position and skin stimulation are highly similar among humans despite large differences in sex, education, and age. This finding suggests that the structure of these cortices remains well preserved over a lifetime. Our observations possibly relativize opinions on cortical plasticity.