ABSTRACT: Viral Expression and Molecular Profiling in Liver Tissue versus Microdissected Hepatocytes in Hepatitis B Virus - Associated Hepatocellular Carcinoma
Project description:Viral Expression and Molecular Profiling in Liver Tissue versus Microdissected Hepatocytes in Hepatitis B Virus - Associated Hepatocellular Carcinoma
Project description:Small, non-coding RNAs control gene expression post-transcriptionally and play important roles in virus-host interactions. Within the liver, the microRNA (miRNA) miR-122 is essential for replication of hepatitis C virus (HCV), while repression of miR-148a by hepatitis B virus (HBV) may enhance tumorigenesis. Despite their importance to the outcome of these infections, few previous studies have described unbiased profiling of small RNAs in the liver during chronic viral hepatitis. Here, we sequenced small (14-40 nts) RNAs in liver from subjects with chronic hepatitis B and C. We found that small RNAs derived from tRNAs, specifically 5’ tRNA-halves (“5’ tRHs”, ~31-34 nts), are abundant in liver and significantly increased during chronic viral infection in humans and also chimpanzees. In most infected livers, 5’ tRH abundance exceeded that of miRNAs. In contrast, in hepatocellular carcinoma (HCC) tissue from these subjects, tRH abundance was reduced concomitant with decreased expression of the tRNA-cleaving ribonuclease, angiogenin. Although tRHs have been identified in mice, our results show they are abundantly expressed in human tissue, increased in chronic viral infection, and decreased in liver cancer. Our findings highlight the potential biological and clinical relevance of these small non-coding RNAs. Small RNA-seq of liver samples from control subjects (n=4), subjects with chronic hepatitis B (n=4) and hepatitis B associated hepatocellular carcinoma (n=4, 3 out of 4 matched with non-tumor tissue) and subjects with chronic hepatitis C (n=4) and tissue from hepatocellular carcinoma of the same patients. Also, small RNA-seq of AGO2 and IgG pulldown in FT3-7 cells. Sequenced AGO2 pulldown (n=3), IgG pulldown (n=2) and total small RNA from FT3-7 cells (n=3). This dataset is part of the TransQST collection.
Project description:The molecular mechanisms whereby hepatitis B virus (HBV) induces hepatocellular carcinoma (HCC) remain elusive. We used genomic and molecular techniques to investigate host-virus interactions by mapping the entire liver of patients with HCC. We compared the gene signature of whole liver tissue (WLT) versus laser capture-microdissected (LCM) hepatocytes with intrahepatic expression of HBV. Gene expression profiling was performed on up to 17 WLT specimens obtained at various distances from the tumor center in individual livers of 11 patients with HCC and on selected LCM samples. HBV biomarkers were determined by real-time PCR and confocal immunofluorescence. Analysis of 5 areas of the liver showed a sharp change in gene expression between the immediate perilesional area and tumor periphery that correlated with a significant decrease in the intrahepatic expression of HBsAg. The tumor was characterized by a large preponderance of down-regulated genes, mostly involved in the metabolism of lipid and fatty acid, glucose, amino acids and drugs, with down-regulation of pathways involved in the activation of PXR/RXR and PPARa/RXRa nuclear receptors, comprising PGC1 and FOXO1, two key regulators of the hepatic metabolic functions and HBV transcription. These findings were confirmed by gene expression of microdissected hepatocytes. However, LCM of malignant hepatocytes also revealed up-regulation of unique genes associated with cancer and signaling pathways, including two novel HCC-associated cancer testis antigen (CTA) genes, NUF2 and TTK. HCC-associated with HBV is characterized by a metabolism switch-off and by a significant reduction in HBsAg. LCM proved to be a critical tool to validate gene signatures associated with HCC and to identify genes that may play a role in hepatocarcinogenesis opening new perspectives for the discovery of novel diagnostic markers and therapeutic targets. Samples were obtained at various distances from the tumor center in individual livers of 11 patients with HBV-associated HCC. Whole liver tissue samples were compared to LCM samples of malignant and non-malignant hepatocytes obtained from the same livers. This dataset is part of the TransQST collection.
Project description:<p>Hepatitis B virus (HBV) infection is a major risk factor for hepatocellular carcinoma (HCC). In this study we sequenced the whole genome (~80X) and transcriptome of tumor and non-tumor samples from four HCC patients and identified over two hundred HBV integration sites. We found significant clonal expansion of HBV-integrated hepatocytes specifically in the tumor samples. We observed a diverse collection of genomic perturbations near viral integration sites, including gene disruption, viral promoter-driven human transcription, viral-human transcript fusion and DNA copy number alteration. We also sequenced one patient at ultra-high coverage (~240X) to build the most comprehensive HBV-integration landscape yet attempted. Our data suggest that the viral integration significantly expands carcinogenic opportunities in HBV-infected individuals.</p>
Project description:Hepatitis B virus (HBV) is known for its ability to interact with the host cell DNA methylation machinery. In HBV-infected hepatocytes, this interaction leads to chronic liver diseases, including hepatocellular carcinoma (HCC). We studied the extent of genomic changes induced by natural HBV infection in human primary hepatocytes. Transcriptome and methylome profiles were obtained at different time points post-infection to identify HBV-specific alterations. Although gene expression and DNA methylation do not directly correlate, they both seem to reflect the effect of cell culture and viral infection at different levels.These changes in the hepatocyte cellular program shed light on the initial events leading to HBV-associated liver diseases.
Project description:A quantitative label-free proteome analysis was performed using plasma samples from 22 hepatitis-C virus (HCV)-induced liver cirrhosis patients, 16 HCV-positive hepatocellular carcinoma patients with underlying cirrhosis and 18 healthy controls. Plasma microparticles (PMPS) were isolated using ultracentrifugation and analyzed via label-free LC-MS/MS. A quantitative label-free proteome analysis was performed using plasma samples from 22 hepatitis-C virus (HCV)-induced liver cirrhosis patients, 16 HCV-positive hepatocellular carcinoma patients with underlying cirrhosis and 18 healthy controls. Plasma microparticles (PMPS) were isolated using ultracentrifugation and analyzed via label-free LC-MS/MS.
Project description:A quantitative label-free proteome analysis was performed using plasma samples from 22 hepatitis-C virus (HCV)-induced liver cirrhosis patients, 16 HCV-positive hepatocellular carcinoma patients with underlying cirrhosis and 18 healthy controls. Plasma microparticles (PMPS) were isolated using ultracentrifugation and analyzed via label-free LC-MS/MS. A quantitative label-free proteome analysis was performed using plasma samples from 22 hepatitis-C virus (HCV)-induced liver cirrhosis patients, 16 HCV-positive hepatocellular carcinoma patients with underlying cirrhosis and 18 healthy controls. Plasma microparticles (PMPS) were isolated using ultracentrifugation and analyzed via label-free LC-MS/MS.
Project description:Hepatitis B virus (HBV) infection could cause hepatitis, liver cirrhosis and hepatocellular carcinoma. HBV-mediated pathogenesis is only partially understood, but X protein (HBx) reportedly possesses oncogenic potential. Exosomes are small membrane vesicles with diverse functions released by various cells including hepatocytes, and HBV harnesses cellular exosome biogenesis and export machineries for virion morphogenesis and secretion. Therefore, HBV infection might cause changes in exosome contents with functional implications for both virus and host. In this project, exosome protein content changes induced by HBV and HBx were quantitatively analyzed by SILAC/LC-MS/MS. Exosomes prepared from SILAC-labeled hepatoma cell line Huh-7 transfected with HBx, wildtype or HBx-null HBV replicon plasmids were analyzed by LC-MS/MS.
Project description:The molecular mechanisms whereby hepatitis B virus (HBV) induces hepatocellular carcinoma (HCC) remain elusive. We used genomic and molecular techniques to investigate host-virus interactions by mapping the entire liver of patients with HCC. We compared the gene signature of whole liver tissue (WLT) versus laser capture-microdissected (LCM) hepatocytes with intrahepatic expression of HBV. Gene expression profiling was performed on up to 17 WLT specimens obtained at various distances from the tumor center in individual livers of 11 patients with HCC and on selected LCM samples. HBV biomarkers were determined by real-time PCR and confocal immunofluorescence. Analysis of 5 areas of the liver showed a sharp change in gene expression between the immediate perilesional area and tumor periphery that correlated with a significant decrease in the intrahepatic expression of HBsAg. The tumor was characterized by a large preponderance of down-regulated genes, mostly involved in the metabolism of lipid and fatty acid, glucose, amino acids and drugs, with down-regulation of pathways involved in the activation of PXR/RXR and PPARa/RXRa nuclear receptors, comprising PGC1 and FOXO1, two key regulators of the hepatic metabolic functions and HBV transcription. These findings were confirmed by gene expression of microdissected hepatocytes. However, LCM of malignant hepatocytes also revealed up-regulation of unique genes associated with cancer and signaling pathways, including two novel HCC-associated cancer testis antigen (CTA) genes, NUF2 and TTK. HCC-associated with HBV is characterized by a metabolism switch-off and by a significant reduction in HBsAg. LCM proved to be a critical tool to validate gene signatures associated with HCC and to identify genes that may play a role in hepatocarcinogenesis opening new perspectives for the discovery of novel diagnostic markers and therapeutic targets.
Project description:We applied small RNA Solexa sequencing technology to identify microRNA expression in human liver samples from surgically removed liver tissues including three normal liver tissues (distal normal liver tissue of liver hemangioma), an hepatitis B virus (HBV)-infected liver, a severe chronic hepatitis B liver, two HBV-related hepatocellular carcinoma (HCC), an hepatitis C virus (HCV)-related HCC, and an HCC without HBV or HCV infection. All samples were collected with the informed consent of the patients and the experiments were approved by the ethics committee of Second Military Medical University, Shanghai, China. We investigated the miRNome in human normal liver and suggested some deregulated abundantly expressed microRNAs in HCC. center_name: National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, Shanghai, China. Examination of miRNome in human liver samples from surgically removed liver tissues including three normal liver tissues (distal normal liver tissue of liver hemangioma), an hepatitis B virus (HBV)-infected liver tissue, a severe chronic hepatitis B liver tissue, an HBV-related hepatocellular carcinoma (HCC) tissue and adjacent liver tissues of different regions,an HBV-related HCC tissue and adjacent liver tissue, an hepatitis C virus (HCV)-related HCC tissue and adjacent liver tissue, and an HCC without HBV or HCV infection and adjacent liver tissue. All 15 human liver tissue samples.