Project description:Type 1 diabetes mellitus (T1D) is a common autoimmune disease mediated by autoimmune attack against pancreatic b cells.Dys-regualtion of the component of peripheral blood mononuclear cells (PBMCs), including T-cells and B-cells, and smaller amounts of NK cells and dendritic cells, have all been implicated in this process This study sought to identify T1D associated differently expressed genes in the peripheral blood mononuclear cell (PBMC). Peripheral blood mononuclear of newly diagnosed type1 diabetes patients and normal controls were purified by LymphoprepTm gradient purification according to the manufacturer’s instructions (Axis-Shield PoC AS, Oslo, Norway) for futher microarray analysis.
Project description:Type 1 diabetes mellitus (T1D) is a common autoimmune disease mediated by autoimmune attack against pancreatic b cells. It has been reported that dys-regulation of microRNAs (miRNAs) may contribute to the pathogenesis of autoimmune diseases, including T1D. This study sought to identify T1D associated miRNAs in the peripheral blood mononuclear cell (PBMC). Peripheral blood mononuclear of newly diagnosed type1 diabetes patients and normal controls were purified by LymphoprepTm gradient purification according to the manufacturerM-bM-^@M-^Ys instructions (Axis-Shield PoC AS, Oslo, Norway) for futher microarray analysis.
Project description:Genome-Scale draft model for Human Peripheral Blood Mononuclear Cells (PBMCs). A GEM for PBMCs was developed by applying the INIT
algorithm on Human Metabolic Reconstruction (HMR 2.0) as a template model. GEMs were contextualised/ constrained for different conditions using expression datasets. The gene/transcript expression data obtained from PBMCs of Type 1 Diabetes progressors, non-progressors, and healthy controls were employed to score each reaction of HMR 2.0. For further detail please refer to Electronic Supplementary Information of Sen et.al, Metabolic alterations in immune cells associate with progression to type 1 diabetes, Diabetologia, 15/01/2020, (https://doi.org/10.1007/s00125-020-05107-6).
Project description:Improving the early diagnosis and treatment of type 2 diabetes (T2D) can effectively control blood glucose. To investigate new long non-coding RNAs (lncRNAs) as molecular markers we used microarrays to identify differentially expressed lncRNAs and mRNAs in peripheral blood mononuclear cells from T2D patients and controls.
Project description:The complex milieu of inflammatory mediators associated with many diseases is often too dilute to directly measure in the periphery, necessitating development of more sensitive measurements suitable for mechanistic studies, earlier diagnosis, guiding selection of therapy, and monitoring interventions. Previously, we determined that plasma of recent-onset (RO) Type 1 diabetes (T1D) patients induce a proinflammatory transcriptional signature in fresh peripheral blood mononuclear cells (PBMC) relative to that of unrelated healthy controls (HC). Here, using an optimized cryopreserved PBMC-based protocol, we compared the signature found between unrelated healthy controls and patients with bacterial pneumonia.
Project description:The complex milieu of inflammatory mediators associated with many diseases is often too dilute to directly measure in the periphery, necessitating development of more sensitive measurements suitable for mechanistic studies, earlier diagnosis, guiding selection of therapy, and monitoring interventions. Previously, we determined that plasma of recent-onset (RO) Type 1 diabetes (T1D) patients induce a proinflammatory transcriptional signature in fresh peripheral blood mononuclear cells (PBMC) relative to that of unrelated healthy controls (HC). Here, using an optimized cryopreserved PBMC-based protocol, we apply this approach to inflammatory bowel disease by examining groups of Crohn's disease (CD) and ulcerative colitus (UC) patients. The induced plasma induced signatures are compared to those of Type 1 diabetes patients (RO T1D) as well as unrelated healthy controls (uHC).
Project description:Inflammation is common to many disorders and responsible for tissue and organ damage. However, the associated peripheral cytokine milieu is frequently dilute and difficult to measure, necessitating development of more sensitive and informative biomarkers for mechanistic studies, earlier diagnosis, and monitoring therapeutic interventions. Previously, we have shown that sera from type 1 diabetes (T1D) patients induces a unique disease-specific pro-inflammatory transcriptional profile in fresh peripheral blood mononuclear cells (PBMCs) compared to sera of healthy controls. To address the potential variance introduced by heterogeneity in responsiveness of PBMCs from different donors, we evaluated human leukemia cell lines as surrogates for fresh PBMCs. Expression signatures of 7 different cell lines were 1) tested in their power to differentiate sera of T1D patients from healthy controls; and 2) compared to the signature obtained with fresh PBMCs.