Project description:Mature seeds of Arabidopsis thaliana are desiccation tolerant, but they lose DT while progressing to germination. Yet, there is a small developmental window during which DT can be rescued by treatment with abscisic acid (ABA). We used a time-series of microarrays to gain temporal resolution and identify relevant genes in the re-establishment of desiccation tolerance with ABA.
Project description:To identify genes of the guard cell transcriptome of Arabidopsis thaliana enriched guard cell samples were compared with total leaf tissue. Genes of the abscisic acid and humidity response of Arabidopsis thaliana guard cells were identified by treatment with ABA-Spray and low humidity.
Project description:Genome-wide transcriptome analysis was carried out in root tissue of Arabidopsis seedlings treated with gold (Au) as Chloroauric acid (HAuCl4). This study demonstrated remarkable changes in root transcriptome within the 12 h exposure. Most of the genes differentially expressed were related to glutathione binding, methylations, secondary metabolism, sugar metabolism, ABA, ethylene, auxin related signalling, transport and signal-transduction pathways.
Project description:To identify genes of the guard cell transkriptome of Arabidopsis thaliana enriched guard cell samples were compared with total leaf tissue. Genes of the abscisic acid and humidity response of Arabidopsis thaliana guard cells were identified by treatment with ABA-Spray and low humidity. Ost1-2 and slac1-3 mutants were compared to their wildtype.
Project description:Heterotrimeric G proteins mediate crucial and diverse signaling pathways in eukaryotes. To gain insights into the regulatory modes of the G protein and the co-regulatory modes of the G protein and the stress hormone abscisic acid (ABA), we generated and analyzed gene expression in G protein subunit single and double mutants of the model plant Arabidopsis thaliana. Through a Boolean modeling approach, our analysis reveals novel modes of heterotrimeric G protein action. Keywords: transcriptome analysis; G protein subunit mutants; abscisic acid (ABA)
Project description:Heterotrimeric G proteins mediate crucial and diverse signaling pathways in eukaryotes. To gain insights into the regulatory modes of the G protein and the co-regulatory modes of the G protein and the stress hormone abscisic acid (ABA), we generated and analyzed gene expression in G protein subunit single and double mutants of the model plant Arabidopsis thaliana. Through a Boolean modeling approach, our analysis reveals novel modes of heterotrimeric G protein action. Keywords: transcriptome analysis; G protein subunit mutants; abscisic acid (ABA) Microarray data were generated from four genotypes (wild type, gpa1-4 mutant, agb1-2 mutant, agb1-2 gpa1-4 double mutant) with or without ABA treatment. Arabidopsis plants were grown in growth chambers with an 8 hr light/16hr dark. Three hundred Arabidopsis leaves excised from 60-70 five-week-old plants were used as the starting material for each guard cell microarray. Ten mature leaves taken from 3-4 plants grown side-by side with the plants for guard cell isolation were used for each leaf sample. Excised leaf and isolated guard cell samples were treated with ABA (50 μM) or EtOH (solvent control) for 3 hrs. For each type of sample (guard cells or leaves), three independent biological replicates were performed, resulting in a total of 48 microarray hybridizations (2 sample types ´ 4 genotypes ´ two treatments ´3 replicates).