Project description:Here we have compared adult wildtype (N2) C. elegans gene expression when grown on different bacterial environments/fod sources in an effort to model naturally occuring nematode-bacteria interactions at the Konza Prairie. We hypothesize that human-induced changes to natural environments, such as the addition of nitrogen fertalizer, have effects on the bacterial community in soils and this drives downstream changes in the structure on soil bacterial-feeding nematode community structure. Here we have used transcriptional profiling to identify candidate genes involved in the interaction of nematodes and bacteria in nature.
Project description:Bacteria belonging to phylum Gemmatimonadetes are found in a wide variety of environments and are particularly abundant in soils. To date, only two Gemmatimonadetes strains have been characterized. Here we report the complete genome sequence and methylation pattern of Gemmatirosa kalamazoonensis KBS708 (ATCC BAA-2150; NCCB 100411), the first characterized Gemmatimondetes strain isolated from soil. Examination of the methylome of Gemmatirosa kalamazoonenis KBS708 using kinetic data from single-molecule, real-time (SMRT) sequencing on the PacBio RS
Project description:Bacteria belonging to phylum Gemmatimonadetes are found in a wide variety of environments and are particularly abundant in soils. To date, only two Gemmatimonadetes strains have been characterized. Here we report the complete genome sequence and methylation pattern of Gemmatirosa kalamazoonensis KBS708 (ATCC BAA-2150; NCCB 100411), the first characterized Gemmatimondetes strain isolated from soil.
Project description:Soil microorganisms act as gatekeepers for soil-atmosphere carbon exchange by balancing the accumulation and release of soil organic matter. However, poor understanding of the mechanisms responsible hinders the development of effective land management strategies to enhance soil carbon storage. Here we empirically test the link between microbial ecophysiological traits and topsoil carbon content across geographically distributed soils and land use contrasts. We discovered distinct pH-controls on microbial mechanisms of carbon accumulation. Land use intensification in low-pH soils that increased pH above a threshold (~ 6.2) lead to carbon loss through increased decomposition following alleviation of acid-retardation of microbial growth. However, loss of carbon with intensification in near neutral-pH soils was linked to decreased microbial biomass and reduced growth efficiency that was, in turn, related to tradeoffs with stress alleviation and resource acquisition. Thus, less intensive management practices in near neutral-pH soils have more potential for carbon storage through increased microbial growth efficiency; whereas, in acidic soils microbial growth is a bigger constraint on decomposition rates.