Project description:Human diffuse intrinsic pontine gliomas (DIPG) are an aggressive form of pediatric brain tumors that arise in the pons in young children thus resulting in significant morbidity and very poor survival. Recent data suggest that mutations in the histone H3.3 variant are often found in these tumors, though the mechanism of their contribution to oncogenesis remains to be elucidated. Here we report that the combination of constitutive PDGFRA activation and p53 suppression as well as expression of the K27M mutant form of the histone H3.3 variant leads to neoplastic transformation of hPSC-derived neural precursors. Our study demonstrates that human ES cells represent an excellent platform for the modeling of human tumors in vitro and in vivo, which could potentially lead to the elucidation of the molecular mechanisms underlying neoplastic transformation and the identification of novel therapeutic targets. Human ES cells were differentiated to NPCs and lentivirally transduced with a combination of constitutively active PDGFRA (D842V), sh-p53, and WT or K27M mutant form of histone H3.3 variant.
Project description:Pediatric high-grade gliomas (pHGGs) harboring the K27M mutation of H3F3A (histone H3.3) are characterized by global reduction of the repressive histone mark H3K27me3 and DNA hypomethylation. Analysis of K27M-induced changes on H3K27me3 occupancy and DNA methylation at differentially expresed genes (K27M vs. wild-type H3.3) in primary pHGG tumor samples. 22 glioblastoma samples from pHGG patients were selected for RNA extraction and hybridization on Affymetrix Affymetrix Human Genome U133 Plus 2.0 Arrays. Expression profiling data of 17 pHHGs are part of our previous study (GSE36245 or GSE34824).
Project description:Pediatric high-grade gliomas (pHGGs) harboring the K27M mutation of H3F3A (histone H3.3) are characterized by global reduction of the repressive histone mark H3K27me3 and DNA hypomethylation. Analysis of K27M-induced changes on H3K27me3 occupancy and DNA methylation at differentially expresed genes (K27M vs. wild-type H3.3) in primary pHGG tumor samples.
Project description:Pediatric high-grade gliomas (pHGG) are devastating and incurable brain tumors with recurrent mutations in histone H3.3. These mutations promote oncogenesis by dysregulating gene expression through alterations of histone modifications. We identify aberrant DNA repair as an independent mechanism, which fosters genome instability in H3.3 mutant pHGG, and opens new therapeutic options. The two most frequent H3.3 mutations in pHGG, K27M and G34R, drive aberrant repair of replication-associated damage by non-homologous end joining (NHEJ). Aberrant NHEJ is mediated by the DNA repair enzyme Polynucleotide Kinase 3'-Phosphatase (PNKP), which shows increased association with mutant H3.3 at damaged replication forks. PNKP sustains the proliferation of cells bearing H3.3 mutations, thus conferring a molecular vulnerability, specific to mutant cells, with potential for therapeutic targeting.
Project description:Human diffuse intrinsic pontine gliomas (DIPG) are an aggressive form of pediatric brain tumors that arise in the pons in young children thus resulting in significant morbidity and very poor survival. Recent data suggest that mutations in the histone H3.3 variant are often found in these tumors, though the mechanism of their contribution to oncogenesis remains to be elucidated. Here we report that the combination of constitutive PDGFRA activation and p53 suppression as well as expression of the K27M mutant form of the histone H3.3 variant leads to neoplastic transformation of hPSC-derived neural precursors. Our study demonstrates that human ES cells represent an excellent platform for the modeling of human tumors in vitro and in vivo, which could potentially lead to the elucidation of the molecular mechanisms underlying neoplastic transformation and the identification of novel therapeutic targets.
Project description:High-grade pediatric gliomas often contain histone H3.3 mutations, but open questions remain about oncogenic mechanisms. To address this gap, we performed ‘reciprocal gene editing’ using CRISPR-Cas9 to introduce H3.3 mutations (K27M, G34R) into H3.3-wildtype brain and glioma cells, while in parallel reverting pre-existing K27M mutations in glioma cells back to wildtype. Analyses of our reciprocally-edited cells indicate that H3.3 mutation leads to specific transcriptomic and epigenetic events, and associated cell biological changes including in xenograft assays. We used these data and the reciprocally-edited cells to screen selected drugs and identify specific putative treatments that are mutant H3.3-specific. Overall, reciprocal gene editing provides new insights into mutant H3.3 oncogenic mechanisms and more broadly may prove useful for studying other cancer-associated mutations.
Project description:Point mutations in histone variant H3.3 (H3.3 K27M, H3.3 G34R) and the H3.3-specific ATRX/DAXX chaperone complex are frequent events in paediatric gliomas. It is clear that H3.3 point mutations affect many chromatin modifications but the exact oncogenic mechanisms are an area of active investigation. Histone H3.3 has been previously linked to PML, a gene which is frequently mutated in Acute Promyelocytic Leukaemia. We find that H3.3 point mutations disrupt the formation of PML nuclear bodies and this prevents differentiation down glial lineages. Similar to PML-mutated Acute Promyelocytic Leukaemias, H3.3-mutated patient-derived gliomas cells are also sensitive to drugs which target PML bodies. We identify PML as a contributor to oncogenesis in H3.3-mutated gliomas and our results indicate that PML-targeting strategies may prove effective at treating H3.3-mutated paediatric gliomas.
Project description:Recent studies have identified a Lys 27-to-methionine (K27M) mutation at one allele of H3F3A, one of the two genes encoding histone H3 variant H3.3, in 60% of high-grade pediatric glioma cases. The median survival of this group of patients after diagnosis is ∼1 yr. Here we show that the levels of H3K27 di- and trimethylation (H3K27me2 and H3K27me3) are reduced globally in H3.3K27M patient samples due to the expression of the H3.3K27M mutant allele. Remarkably, we also observed that H3K27me3 and Ezh2 (the catalytic subunit of H3K27 methyltransferase) at chromatin are dramatically increased locally at hundreds of gene loci in H3.3K27M patient cells. Moreover, the gain of H3K27me3 and Ezh2 at gene promoters alters the expression of genes that are associated with various cancer pathways. These results indicate that H3.3K27M mutation reprograms epigenetic landscape and gene expression, which may drive tumorigenesis. We performed chromatin-immunoprecipitation of H3K27me3, H3K4me3, and EZH2 in SF7761 and NSC cell lines. And do RNA-seq in SF7761, SF8828 and NSC cell lines. SF7761 and SF8628 cell lines from patients harboring the histone H3.3 K27M mutation were obtained from Hashizume et al. (2012). NSCs (N7800-100) were purchased from Invitrogen and cultured and maintained in NSC medium (A10509-01, StemPro NSC SFM, Invitrogen).
Project description:Lysine27Methionine mutations (K27M) in the histone H3 (H3.3 and H3.1) are highly prevalent in pediatric high-grade gliomas (HGG). This study found H3.3K27M caused the upregulation of multiple cancer/testis (CT) antigens, include IL13RA2 and VCX family proteins. Overexpression of VCX3A/B stimulates the expression of genes involved in immune response.