Project description:To gain insights into the mechanisms of Eupolyphaga sinensis Walker (ESW) and taspine derivate on inhibition to HCC, we have employed whole genome microarray expression profiling as a discovery platform to identify different genes between ESW-treated sample and control. At the same time, the differences were investigated between taspine derivate and the same control. SMMC-7721 cells were cultivated in the absence or presence of 0.1mg/mL ESWE and Taspine derivate of 2.5x10-5mol/L for 48 h, followed by the Agilent Whole Human Genome Oligo Microarray. The PLG, PKCM-NM-2 and IL3RA genes confirmation of Microarray analysis was confirmed by Real-time PCR. SMMC-7721 cells were cultivated in the absence or presence of 0.1mg/mL Eupolyphaga sinensis Walker extract (ESWE) and Taspine derivate of 2.5x10-5mol/L for 48 h, followed by the Agilent Whole Human Genome Oligo Microarray
Project description:To gain insights into the mechanisms of Eupolyphaga sinensis Walker (ESW) and taspine derivate on inhibition to HCC, we have employed whole genome microarray expression profiling as a discovery platform to identify different genes between ESW-treated sample and control. At the same time, the differences were investigated between taspine derivate and the same control. SMMC-7721 cells were cultivated in the absence or presence of 0.1mg/mL ESWE and Taspine derivate of 2.5x10-5mol/L for 48 h, followed by the Agilent Whole Human Genome Oligo Microarray. The PLG, PKCβ and IL3RA genes confirmation of Microarray analysis was confirmed by Real-time PCR.
Project description:Background: Liver cancer is the third deadliest type of cancer, posing a serious threat to human health. Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer. C. sinensis, classified as a definite group I carcinogen by the IARC (International Agency for Research on Cancer), is an important risk factor for HCC. Although many studies have shown that C. sinensis infection affects the prognosis of HCC patients, the specific mechanisms are still unclear, especially the dynamics and regulatory roles of chromatin accessibility. Results: In this study, we integrated ATAC-seq, RNA-seq, and ChIP-seq data to elucidate changes in the epigenetics of HCC after the C. sinensis infection. Many different accessibility regions (DARs) were identified both in tumors and adjacent tissue after the C. sinensis infection. Meanwhile, top TFs whose motifs were enriched in DAR were found, such as HNF4a, FOXI1, etc. Although there were slight deviations, epigenetic changes were found to be consistent with gene expression levels. We also revealed that H3K9ac, H3K4me2, H3K4me3, H3K27ac, and H3K4me1 were associated with chromatin accessibility. Importantly, we also found potential evidence that C. sinensis infection would alter the spatial structure of the HCC genome. Finally, both molecular experimental results and clinical data certified that C. sinensis infection would promote the metastasis of HCC. Conclusions: C. sinensis infection will remodel the chromatin accessibility of HCC, leading to changes in gene expression levels. This study provides conclusive evidence that C. sinensis infection alters the epigenetics of HCC.
Project description:The transcriptome profiling five tissues of juvenile Eriocheir sinensis, including gill, muscle, thoracic ganglion, eyestalk and hepatopancreas, were sequenced to get the basic dataset for constructed a genome-scale metabolic network model for E. sinensis. The model was used to predict the optimal nutrient requirements of E. sinensis in feed and suggestions for feed improvement were put forward based on the simulation results.
Project description:We investigate the global miRNA expression profile of An. sinensis using illumine Hiseq 2000 sequencing.The annotation and prediction of miRNAs lays the foundation for the further functional study of An. sinensis miRNAs and will facilitate their application in vector control.
Project description:We profile transcriptome-wide m6A in female and male Anopheles sinensis and reveal that m6A is also a highly conserved modification of mRNA in mosquitoes were generated by deep sequencing, in triplicate, using illumina Novaseq™ 6000. Distinct from mammals and yeast, but similar to Arabidopsis thaliana, m6A in An. sinensis is enriched not only around the stop codon and within 3’-untranslated regions, but also around the start codon and 5’-UTR. Gene ontology analysis indicates that the unique distribution pattern of m6A in An. sinensis is associated with mosquito sex-specific pathways. In addition, the positive correlation between m6A deposition and mRNA abundance indicates that m6A can play roles in regulating gene expression in mosquitoes. Our study proposed a transcriptional regulatory network of m6A in An. sinensis, which may provide a new clue for the control of this disease-transmitting vector.
Project description:Purpose: transcriptome sequencing of Conopomorpha sinensis Methods: high-through Illumina HiSeqTM 2000 Results:66017 transcripts,35383 unigenes Conclusions:This study provided valuable transcriptome data for the litchi fruit borer, which was the first fundamental genomic basis for exploiting gene resources from the litchi fruit borer
Project description:Clonorchis sinensis is a zoonotic parasite causing clonorchiasis associated with human diseases such as biliary calculi, cholecystitis, liver cirrhosis, and is classified as carcinogenic to humans for cholangiocarcinoma. MicroRNAs (miRNAs) are non-coding, regulating small RNA molecules essential for the complex life cycle of parasites and involved in parasitic infections. To identify and characterize miRNAs expressed in adult C. sinensis residing chronically in the biliary tract, we developed an integrative approach combining deep sequencing, bioinformatic predictions with stem-loop real-time PCR analysis. Here we report the use of this approach to identify and clone 6 new and 62,512 conserved C. sinensis miRNAs which belong to 284 families. There is strong bias on families, family members and sequence nucleotides in C. sinensis. Uracil is the dominant nucleotide, particularly at positions 1, 14 and 22, which were located approximately at the beginning, middle and the end of conserved miRNAs. There is no significant “seed region” at the first and ninth positions commonly found in human, animals and plants. Categorization of conserved miRNAs indicated that miRNAs of C. sinensis are still innovated and concentrated along three branches of the phylogenetic tree leading to bilaterians, insects and coelomates. There are two miRNA strategies in C. sinensis for its parasitic life: keeping a large category of miRNA families of different animals and keeping a stringent conserved seed region with high active innovation in other place of miRNA mainly in the middle and the end, which are perfect for the parasite to perform its complex life style and for host changes. The present study represents the first large scale characterization of C. sinensis miRNAs, which have implications for understanding the complex biology of this zoonotic parasite, as well as the miRNA studies of other related species such as Opisthorchis felineus and O. viverrini of human and animal health significance.
Project description:Clonorchiasis is associated with bile duct malignancy and the subsequent development of cholangiocarcinoma. Although this is likely caused by adult Clonorchis sinensis and its excretory-secretory products (ESP), the precise molecular mechanisms remain obscure. To evaluate the effect of C. sinensis infection on differential gene expression in host hepatocytes, we used cDNA microarrays in human cholangiocarcinoma cells through the mimicking of C. sinensis infestation, and analyzed differential mRNA expression patterns of host cells. Keywords: Time course