Project description:A tet-off strain of Saccharomyces cerevisiae was constructed in which the GLN4 glutamine tRNA synthetase gene was placed under control of a doxycycline-regulated promoter. The transcriptional responses to Gln4p tRNA synthetase depletion were assessed by growth of the strain in the presence, or absence, of doxycycline (1 µg/ml). A control, wild-type strain was similarly treated with doxycycline or left untreated as a reference. Each strain/condition RNA isolation was performed using triplicate independent biological samples A, B and C.
Project description:A propolis-resistant Saccharomyces cerevisiae mutant strain was obtained using an evolutionary engineering strategy based on successive batch cultivation under gradually increasing propolis levels. The mutant strain FD 11 was selected at a propolis concentration that the reference strain could not grow at all. Whole-genome transcriptomic analysis of FD11 was performed with respect to its reference strain to determine differences in gene expression levels between the two strains. Saccharomyces cerevisiae
Project description:To understand the extent that Heat shock protein 90 (Hsp90) regulated its target proteins at the transcription level, transcriptomic change was profiled in yeast cells upon Hsp90 compromising. We genetically modified the R1158 strain (resulting genotype of mutant strain: TETp-HSC82 hsp82Δ arg4Δ lys5Δ car2Δ::URA3) and then reduced the Hsp90 amount with doxycycline treatment. Fold change of mRNA from untreated to treated cells indicated the transcriptomic change. Totally, we identified 1104 genes mis-regulated with a fold change of no less than 1.5 (P <0.05) upon Hsp90 compromising.
Project description:Proteomic analysis of the extracellular matrix of Saccharomyces cerevisiae W303-1A Wt and the isogenic mutant strain gup1Δ during the development of multicellular overlays.
Project description:This study explores the connection between changes in gene expression and the genes that determine strain survival during suspension culture, using the model eukaryotic organism, Saccharomyces cerevisiae. The Saccharomyces cerevisiae homozygous diploid deletion pool, and the BY4743 parental strain were grown for 18 hours in a rotating wall vessel, a suspension culture device optimized to minimize the delivered shear. In addition to the reduced shear conditions, the rotating wall vessels were also placed in a static position or in a shaker in order to change the amount of shear stress on the cells. Keywords: shear stress, time course
Project description:A caffeine-resistant Saccharomyces cerevisiae mutant strain was obtained using an evolutionary engineering strategy based on successive batch cultivation at gradually increasing caffeine levels. The mutant strain Caf905-2 was selected at a caffeine concentration where its reference strain could not grow at all. Whole-genome transcriptomic analysis of Caf905-2 was performed with respect to its reference strain.
Project description:We report change in the chromatin contacts upon deletion of ATP-dependent chromatin remodellers (ISW1, ISW2 and CHD1) in Saccharomyces cerevisiae.
Project description:We report change in the nucleosome occupancy and accessibility upon deletion of ATP-dependent chromatin remodellers (ISW1, ISW2 & CHD1) in Saccharomyces cerevisiae.
Project description:We report change in the chromatin contacts at nucleosomal resolution upon deletion of ATP-dependent chromatin remodellers(Isw1,Isw2 and Chd1) in Saccharomyces cerevisiae.