Project description:Purpose:To uncover the related mechanisms underlie virulence attenuation of Brucella canis MucR mutant strain. Methods:Three Brucella canis RM6/66 strains and three Brucella canis ΔmucR strains were grown in TSB at 37℃ until the log phase was reached, total RNA was isolated using the TRIzol according to the manufacturer’s instructions.The sequencing library of each RNA sample was prepared by using NEB Next Ultra Directional RNA Library Prep Kit for Illumina as recommended by the manufacturer. An Illumina platform was used to perform the transcriptome sequencing. Results: The results revealed that expressions of 694 genes were significantly different between RM6/66 and ΔmucR. Data analysis showed that in the COG term, the different expressed genes involved in translation, ribosomal structure and biogenesis, signal transduction mechanisms, energy production and conversion, intracellular trafficking, secretion, and vesicular transport, and extracellular structures were significantly affected. Pathway enrichment analysis indicated that the genes involved in ribosome, oxidative phosphorylation, aminoacyl-tRNA biosynthesis and protein export were significantly enriched.
Project description:To explore the role of Brucella BI-1 in Brucella suis S2, we constructed the Brucella BI-1 deletion mutant strain and its complementary strain. We then determined the effect of Brucella BI-1 deletion on the physiological characteristics of Brucella suis S2 and revealed them via integrated transcriptomic and proteomic analyses. Brucella BI-1 deletion altered the membrane properties of Brucella suis S2 and decreased its resistance to acidic pH, H2O2, polymyxin B, and lincomycin. Additionally, deleting Brucella BI-1 led to defective growth, cell division, and viability in Brucella suis S2. In conclusion, our results revealed that Brucella BI-1 is a bacterial cytoprotective protein involved in membrane homeostasis, cell division, and stress resistance in Brucella suis S2.
Project description:MucR is one of the few transcriptional regulatory proteins that has been linked to Brucella pathogenesis. We used custom-made Affymetrix B. abortus strain 2308 derived GeneChips to copare the gene expression properties of wild type and isogenic mucR mutant cells.
Project description:Investigation of whole genome gene expression level changes in a Brucella melitensis delta prlr mutant compared to the wild type strain. The mutants analyzed in this study are further described in A. Mirabella, R-M Yanez, R.M. Delrue, S. Uzureau, M.S. Zygmunt, A. Cloeckaert, X. De Bolle, J.J. Letesson (2012). The two component system PrlS/PrlR of Brucella melitensis is required for persistence in mice and appears to respond to ionic strength. Microbiology