Project description:Purpose:To uncover the related mechanisms underlie virulence attenuation of Brucella canis MucR mutant strain. Methods:Three Brucella canis RM6/66 strains and three Brucella canis ΔmucR strains were grown in TSB at 37℃ until the log phase was reached, total RNA was isolated using the TRIzol according to the manufacturer’s instructions.The sequencing library of each RNA sample was prepared by using NEB Next Ultra Directional RNA Library Prep Kit for Illumina as recommended by the manufacturer. An Illumina platform was used to perform the transcriptome sequencing. Results: The results revealed that expressions of 694 genes were significantly different between RM6/66 and ΔmucR. Data analysis showed that in the COG term, the different expressed genes involved in translation, ribosomal structure and biogenesis, signal transduction mechanisms, energy production and conversion, intracellular trafficking, secretion, and vesicular transport, and extracellular structures were significantly affected. Pathway enrichment analysis indicated that the genes involved in ribosome, oxidative phosphorylation, aminoacyl-tRNA biosynthesis and protein export were significantly enriched.
Project description:To explore the role of Brucella BI-1 in Brucella suis S2, we constructed the Brucella BI-1 deletion mutant strain and its complementary strain. We then determined the effect of Brucella BI-1 deletion on the physiological characteristics of Brucella suis S2 and revealed them via integrated transcriptomic and proteomic analyses. Brucella BI-1 deletion altered the membrane properties of Brucella suis S2 and decreased its resistance to acidic pH, H2O2, polymyxin B, and lincomycin. Additionally, deleting Brucella BI-1 led to defective growth, cell division, and viability in Brucella suis S2. In conclusion, our results revealed that Brucella BI-1 is a bacterial cytoprotective protein involved in membrane homeostasis, cell division, and stress resistance in Brucella suis S2.
Project description:MucR is one of the few transcriptional regulatory proteins that has been linked to Brucella pathogenesis. We used custom-made Affymetrix B. abortus strain 2308 derived GeneChips to copare the gene expression properties of wild type and isogenic mucR mutant cells.
Project description:Investigation of whole genome gene expression level changes in a Brucella melitensis delta prlr mutant compared to the wild type strain. The mutants analyzed in this study are further described in A. Mirabella, R-M Yanez, R.M. Delrue, S. Uzureau, M.S. Zygmunt, A. Cloeckaert, X. De Bolle, J.J. Letesson (2012). The two component system PrlS/PrlR of Brucella melitensis is required for persistence in mice and appears to respond to ionic strength. Microbiology
Project description:This SuperSeries is composed of the following subset Series: GSE35612: Microarray analysis of gene expression in rams experimentally infected with a rough virulent strain of Brucella ovis (acute phase) GSE35613: Microarray analysis of gene expression in rams experimentally infected with a rough virulent strain of Brucella ovis (chronic 1 phase) GSE35614: Microarray analysis of gene expression in rams experimentally infected with a rough virulent strain of Brucella ovis (chronic 2 phase) Refer to individual Series
Project description:Brucellosis is one of the most common zoonotic epidemics worldwide. Vaccination against Brucellosis is an important control strategy to prevent the disease in many high-prevalence regions. At present, Brucella vaccine strain S2 is the most widely used vaccine in China. In this study, to uncover the related mechanisms underlie virulence attenuation of S2, we characterized the transcriptional profile of S2 and 1330 infected macrophages by transcriptome analysis. The results revealed that expressions of 440 genes were significantly different between macrophages infected by 1330 and S2. Data analysis showed that in the gene ontology term, the different expressed genes involved in innate immune response, phagoctyosis, recognition, and inflammatory response were significantly enriched. Pathway enrichment analysis indicated that the genes involved in transcriptional misregulation in cancer, staphylococcus aureus infection pathways and NF-kappa B signaling pathway were significantly affected. To reveal the molecular mechanisms related to different expression profiles of infected macrophages, the transcription levels of the different genes between the two bacterial genomes were also detected. In total, the transcription of 29 different genes was significantly changed in either culture medium or infected microphages. The results of current study can be conducive to the promotion of better understanding of the related mechanisms underlie virulence attenuation of S2 and interactions between host cells and brucella strains.
Project description:Investigation of whole genome gene expression level changes in a Brucella melitensis delta prlr mutant compared to the wild type strain. The mutants analyzed in this study are further described in A. Mirabella, R-M Yanez, R.M. Delrue, S. Uzureau, M.S. Zygmunt, A. Cloeckaert, X. De Bolle, J.J. Letesson (2012). The two component system PrlS/PrlR of Brucella melitensis is required for persistence in mice and appears to respond to ionic strength. Microbiology A six chip study using total RNA recovered from three separate wild-type cultures of Brucella melitensis 16M and three separate cultures of a prlR mutant strain. Each chip measures the expression level of 3,198 genes from Brucella melitensis 16M with nineteen 60 mer probe pairs (PM/MM) per gene, with three-fold technical redundancy.