Project description:Sex differences in gene expression throughout development are poorly understood, especially sex-specific expression of micro RNAs. However these patterns of gene expression could have important implications in our understanding of the underlying mechanics of sex differentiation and sexual conflict. We extract mRNA and miRNA from male and female Drosophila melanogaster from three developmental timepoints, third larval instar, pupae and adults, and examine gene expression using microarrays. We found a large number of sex-biased mRNA transcripts at each stage of development, whereas sex-biased miRNA expression was low in larvae and pupae and more prevalent in adults.
Project description:Sex differences in gene expression throughout development are poorly understood, especially sex-specific expression of micro RNAs. However these patterns of gene expression could have important implications in our understanding of the underlying mechanics of sex differentiation and sexual conflict. We extract mRNA and miRNA from male and female Drosophila melanogaster from three developmental timepoints, third larval instar, pupae and adults, and examine gene expression using microarrays. We found a large number of sex-biased mRNA transcripts at each stage of development, whereas sex-biased miRNA expression was low in larvae and pupae and more prevalent in adults.
Project description:Sex differences in gene expression throughout development are poorly understood, especially sex-specific expression of micro RNAs. However these patterns of gene expression could have important implications in our understanding of the underlying mechanics of sex differentiation and sexual conflict. We extract mRNA and miRNA from male and female Drosophila melanogaster from three developmental timepoints, third larval instar, pupae and adults, and examine gene expression using microarrays. We found a large number of sex-biased mRNA transcripts at each stage of development, whereas sex-biased miRNA expression was low in larvae and pupae and more prevalent in adults. We isolated 2 biological replicates of each sex at each of the three developmental timepoints and extracted mRNA and miRNA from each sample, creating 12 samples of each type of RNA which were ran on GeneChip Drosophila Genome 2.0 Affymetrix microarrays to examine mRNA expression, and GeneChip miRNA 3.0 Affymetrix microarrays to examine miRNA expression.
Project description:Sex differences in gene expression throughout development are poorly understood, especially sex-specific expression of micro RNAs. However these patterns of gene expression could have important implications in our understanding of the underlying mechanics of sex differentiation and sexual conflict. We extract mRNA and miRNA from male and female Drosophila melanogaster from three developmental timepoints, third larval instar, pupae and adults, and examine gene expression using microarrays. We found a large number of sex-biased mRNA transcripts at each stage of development, whereas sex-biased miRNA expression was low in larvae and pupae and more prevalent in adults. We isolated 2 biological replicates of each sex at each of the three developmental timepoints and extracted mRNA and miRNA from each sample, creating 12 samples of each type of RNA which were ran on GeneChip Drosophila Genome 2.0 Affymetrix microarrays to examine mRNA expression, and GeneChip miRNA 3.0 Affymetrix microarrays to examine miRNA expression.
Project description:Genes with sex-biased expression in adults experience unique evolutionary dynamics. It is unclear, however, whether the selection pressures responsible for these well documented patterns also act upon genes with sex-biased expression in other developmental stages. To examine this, we measured expression in male and female Drosophila melanogaster larvae.
Project description:We used long-oligonucleotide microarrays to investigate whether alternative splicing in Drosophila is regulated in a sex-, stage-, or tissue-specific manner. To examine sex-specific splicing, we compared gene expression profiles of male and female pupae 12 hours after pupariation. To examine stage-specific splicing, we compared expression profiles of mixed-sex, 0-24 hour old embryos and mixed-sex, 12 hour old pupae. To examine tissue-specific splicing, we compared expression profiles of adult male heads and abdomens 24-48 hours after eclosion. To examine tissue-specific splicing, we compared expression profiles of adult male heads and abdomens at 24-48 hours after eclosion. Keywords: tissue-specific expression profiles
Project description:We used long-oligonucleotide microarrays to investigate whether alternative splicing in Drosophila is regulated in a sex-, stage-, or tissue-specific manner. To examine sex-specific splicing, we compared gene expression profiles of male and female pupae 12 hours after pupariation. To examine stage-specific splicing, we compared expression profiles of mixed-sex, 0-24 hour old embryos and mixed-sex, 12 hour old pupae. To examine tissue-specific splicing, we compared expression profiles of adult male heads and abdomens 24-48 hours after eclosion. To examine tissue-specific splicing, we compared expression profiles of adult male heads and abdomens at 24-48 hours after eclosion. Keywords: tissue-specific expression profiles Drosophila isogenic line WI89 was used. Mixed-sex, mixed-stage embryos were harvested from plates on which females had been allowed to oviposit for 24 hours. To obtain synchronized cohorts of pupae, male and female white prepupae were collected at 0-1 hour after pupariation and aged for 12 hours at 25C. Mixed-sex pupal samples were generated by mixing equal amount of male and female pupal RNA. Adult heads and abdomens were dissected from 24-48 hour old males. mRNA was isolated and labeled without amplification.
Project description:RNA from six developmental stages during the Drosophila life cycle (0-2hr embryos, 3-16hr embryos, larvae, pupae, male and female adults) was isolated, reverse transcribed in the presence of oligodT and random hexamers and the labeled cDNA was hybridized to these arrays.Each sample was hybridized four times, twice with Cy5 labeling and twice with Cy3 labeling. Keywords: other