Project description:Untargeted proteomics from a 5,000 km+ transect across the central Pacific Ocean from Hawaii to Tahiti. The expedition crossed multiple biogeochemical provinces, inlcuding the oligotrophic North Pacific Subtropical Gyre, the extremety of the Eastern Tropical North Pacific Oxygen Deficient Zone, and the relatively productive equatorial region associated with upwelling. This dataset focuses on the microbial fraction (0.2-3.0 micrometer filter size) and the microbial community dynamics across these biogeochemical provinces, from the surface oceance to the mesopelagic (1,250 m depth maximum).
Project description:A high-density oligonucleotide microarray that targets functional genes in marine microbial community was designed as a result of a multi-institutional effort. The design is based on nucleotide sequence data obtained with metagenomics and metatranscriptomics. The chip targets ~20000 gene sequences represented by 145 gene categories relevant to microbial metabolism in the open ocean and coastal environments. The three domains of life and also viruses are represented on the chip. Using this microarray we were able to compare the functional responses of microbial communities to iron and phosphate enrichments in samples from the North Pacific Subtropical Gyre. The response was attributed to individual lineages of microorganisms including uncharacterized strains. Transcription of 68% of the gene probes was detected from a variety of microorganisms, and the patterns of gene transcription indicated a relief from iron limitation and transition into nitrogen limitation. When combined with physicochemical descriptions of each system, the use of microarrays can help to develop a comprehensive understanding of the changes in microbially-driven processes. We analyzed three samples amended with phosphate and two sample amended with iron (III) after 48h of incubation
Project description:Dataset from a shipboard incubation experiment of an ocean surface-water microbial community sampled at 25m depth at Station ALOHA in the North Pacific Subtropical Gyre. Incubations were amended with ammonium, glutamate, leucine, nitrate and urea, in two isotopic variants: 15N (to track incorporation by various community members) and 14N (for quantitation of abundance changes by diDO-IPTL).