Project description:Our ChIP resuls suggested that coilin association with U3, snRNA and histone genes might be dependent on coilin-RNA interaction. We used iCLIP of coilin-GFP expressed in HeLa and P19 cell lines at endogenous levels to identify coilin RNA targets and investigate RNA-binding specificity. P19 cells expressing GFP fused to a nuclear localization signal (GFP-NLS) was used as a negative control. iCLIP results revealed that coilin binds several classes of ncRNA including snRNAs, U3 snoRNA and scaRNAs. Interestlignly the majority of coilin targets were intronic snoRNAs, suggesting a novel role of CBs in snoRNA biogenesis. 5 biological replicates from P19 and 2 biological replicates from HeLa cells after UV-crosslinking. Negative control samples prepared from GFP-NLS fusion protein are stored uder accession E-MTAB-747.
Project description:Our ChIP resuls suggested that coilin association with U3, snRNA and histone genes might be dependent on coilin-RNA interaction. We used iCLIP of coilin-GFP expressed in HeLa and P19 cell lines at endogenous levels to identify coilin RNA targets and investigate RNA-binding specificity. P19 cells expressing GFP fused to a nuclear localization signal (GFP-NLS) was used as a negative control. iCLIP results revealed that coilin binds several classes of ncRNA including snRNAs, U3 snoRNA and scaRNAs. Interestlignly the majority of coilin targets were intronic snoRNAs, suggesting a novel role of CBs in snoRNA biogenesis.
Project description:To investigate location of Cajal bodies (CB) inside the cell nucleus, we created a stable cell line expressing the GFP version of CB-marker protein coilin at endogenous levels and performed ChIP-seq with anti-EGFP antibody. ChIP-seq revealed close association of CBs wih U3 genes, snRNA genes and histone genes in histone cluster 1 and 2. 1 biological replicate of coilin ChIP-seq and input sample
Project description:Gene expression profiling of immortalized human mesenchymal stem cells with hTERT/E6/E7 transfected MSCs. hTERT may change gene expression in MSCs. Goal was to determine the gene expressions of immortalized MSCs.
Project description:Kynureninase is a member of a large family of catalytically diverse but structurally homologous pyridoxal 5'-phosphate (PLP) dependent enzymes known as the aspartate aminotransferase superfamily or alpha-family. The Homo sapiens and other eukaryotic constitutive kynureninases preferentially catalyze the hydrolytic cleavage of 3-hydroxy-l-kynurenine to produce 3-hydroxyanthranilate and l-alanine, while l-kynurenine is the substrate of many prokaryotic inducible kynureninases. The human enzyme was cloned with an N-terminal hexahistidine tag, expressed, and purified from a bacterial expression system using Ni metal ion affinity chromatography. Kinetic characterization of the recombinant enzyme reveals classic Michaelis-Menten behavior, with a Km of 28.3 +/- 1.9 microM and a specific activity of 1.75 micromol min-1 mg-1 for 3-hydroxy-dl-kynurenine. Crystals of recombinant kynureninase that diffracted to 2.0 A were obtained, and the atomic structure of the PLP-bound holoenzyme was determined by molecular replacement using the Pseudomonas fluorescens kynureninase structure (PDB entry 1qz9) as the phasing model. A structural superposition with the P. fluorescens kynureninase revealed that these two structures resemble the "open" and "closed" conformations of aspartate aminotransferase. The comparison illustrates the dynamic nature of these proteins' small domains and reveals a role for Arg-434 similar to its role in other AAT alpha-family members. Docking of 3-hydroxy-l-kynurenine into the human kynureninase active site suggests that Asn-333 and His-102 are involved in substrate binding and molecular discrimination between inducible and constitutive kynureninase substrates.
Project description:Transcriptional profiling of human mesenchymal stem cells comparing normoxic MSCs cells with hypoxic MSCs cells. Hypoxia may inhibit senescence of MSCs during expansion. Goal was to determine the effects of hypoxia on global MSCs gene expression.