Project description:Pleurotus ostreatus, also known as the oyster mushroom, is an active lignin decomposer in the forests. The genomes of the monokaryotic strains PC15 and PC9 have been used to characterize the content and distribution of transposable elements. This study analyzes the impact of transposable element insertions on the global transcriptome of P. ostreatus. The transcriptome of PC15 and PC9 has been analyzed in exponential growth during submerged fermentation in malt-yeast extract-sucrose medium RNAseq of two P. ostreatus strains: PC15 and PC9
Project description:Pleurotus ostreatus, also known as the oyster mushroom, is an active lignin decomposer in the forests. The genomes of the monokaryotic strains PC15 and PC9 have been used to characterize the content and distribution of transposable elements. This study analyzes the impact of transposable element insertions on the global transcriptome of P. ostreatus. The transcriptome of PC15 and PC9 has been analyzed in exponential growth during submerged fermentation in malt-yeast extract-sucrose medium
Project description:Photoresponse mechanism of oyster muchroom mycelia was studied using a custom microarray prepared on the basis of the genome information (Pleurotus ostreatus PC15 v2.0) in JGI Genome Portal. Blue light stimulation to the mycelia caused the up-regulation and down-regulation of genes expression. Particulary, the genes coding rate-controlling enzymes in glycolysis, pentose phosphate, and sikimic acid pathways were up-regulated to accumulate shikimic acid dramatically.
Project description:Light plays an important role in the growth and differentiation of Lentinula edodes mycelia, and mycelial morphology is influenced by light wavelengths. The blue light-induced formation of brown film on the vegetative mycelial tissues of L. edodes is an important process. However, the mechanisms of L. edodes’ brown film formation, as induced by blue light, are still unclear. Using a high-resolution liquid chromatography-tandem mass spectrometry integrated with a highly sensitive immune-affinity antibody method, phosphoproteomes of L. edodes mycelia under red- and blue-light conditions were analyzed. A total of 11,224 phosphorylation sites were identified on 2,786 proteins, of which 9,243 sites on 2,579 proteins contained quantitative information. In total, 475 sites were up-regulated and 349 sites were down-regulated in the blue vs red group. To characterize the differentially phosphorylated proteins, systematic bioinformatics analyses, including gene ontology annotations, domain annotations, subcellular localizations, and Kyoto Encyclopedia of Genes and Genomes pathway annotations, were performed. These differentially phosphorylated proteins were correlated with light signal transduction, cell wall degradation, and melanogenesis, suggesting that these processes are involved in the formation of the brown film. Our study provides new insights into the molecular mechanisms of the blue light-induced brown film formation at the post-translational modification level.
Project description:We studied the biodegradation of green polyethylene (GP) by Pleurotus ostreatus. The GP was developed from renewable raw materials to help to reduce the emissions of greenhouse gases. However, little information regarding the biodegradation of GP discarded in the environment is available. P. ostreatus is a lignocellulolytic fungus that has been used in bioremediation processes for agroindustrial residues, pollutants, and recalcitrant compounds. Recently, we showed the potential of this fungus to degrade oxo-biodegradable polyethylene. GP plastic bags were exposed to sunlight for up to 120 days to induce the initial photodegradation of the polymers. After this period, no cracks, pits, or new functional groups in the structure of GP were observed. Fragments of these bags were used as the substrate for the growth of P. ostreatus. After 30 d of incubation, physical and chemical alterations in the structure of GP were observed. We conclude that the exposure of GP to sunlight and its subsequent incubation in the presence of P. ostreatus can decrease the half-life of GP and facilitate the mineralization of these polymers.
Project description:In this study, we analyzed the genome-wide epigenetic and transcriptional patterns of the white-rot basidiomycete Pleurotus ostreatus throughout its life cycle. Our results performed by using high-throughput sequencing analyses revealed that strain-specific DNA methylation profiles are primarily involved in the repression of transposon activity, and suggest that 21 nt small RNAs play a key role in transposon silencing.Furthermore, we provide evidence that transposon-associated DNA methylation, but not sRNA production, is directly involved in the silencing of genes surrounded by transposons. Finally, we identified key genes activated in the fruiting process through the comparative analysis of transcriptomes.
Project description:Pleurotus tuoliensis is a precious edible fungus with extremely high nutritive and medicinal value. The cultivation period of P. tuoliensis is longer than those of other Pleurotus species, which is mainly due to a longer mycelium physiological maturation period (30-60 days). Currently, the molecular processes underlying physiological maturation of the mycelium remain unclear. We performed a comparative transcriptomic analysis of immature and mature mycelia using RNA-seq. De novo transcriptome assembly resulted in identification of 17,030 unigenes. 451 differentially expressed genes, including those encoding nucleoside diphosphate kinase (NDPK), glycoside hydrolase family proteins, exopolygalacturonase, and versatile peroxidases, were identified. GO and KEGG analyses revealed that nucleotide synthesis and energy metabolism are highly active during the physiological maturation of mycelia, and genes related to these pathways were significantly up-regulated in mature mycelia. NDPK is predicted to be essential for mycelia maturation. Our findings contribute to a comprehensive understanding of mycelia maturation in a commercially important fungal species. Future efforts will focus on the function of NDPK and the mechanism by which it regulates mycelia maturation.
Project description:Purpose: The goal of this stufy is to elucidate the transcriptional regulatory network in response to light in S. fimicola. We analyzed blue-light-induced genome-wide transcriptional responses by high-throughput RNA-seq to determine the transcriptional profiles between the wild type and Sfwc-1(∆lov) mutant. Untreated mycelia (constant darkness sample) and mycelia treated with blue light for 15 and 45 min were used to explore. Method: the S. fimiocla wild type and Sfwc-1(∆lov) mutant were grown on malt extract agar I in constant dark for 2 days. The drak grown samples were exposed to blue light for 15 and 45 min. The cDNA was synthesized from mRNA by using the TruSeq Stranded mRNA Library Prep Kit (Illumina, USA)and then sequencing involved using Illumina NextSeq 500. The clean RNA-seq reads were then de novo assembled into a transcript sequence by using the Trinity platform and the jaccard_clip option. The quantified gene and isoform abundances (transcript abundance estimation) were obtained by using RNA-seq by expectation-maximization (RSEM) software with the default setting of Bowtie. Then differentially expressed genes (DEGs) were identified by using the EdgeR Bioconductor package in Trinity platform. The normalized RSEM-estimated abundances weighted by Trimmed Mean of M values (TMM) method counted by EdgeR was used for pairwise comparison of each of the sample pairs. Conclusion: Our study represents the transcription regulatory nextwork existing in S. fmicola, generated by RNA-seq technology. The data analysis has been providing a framework for comparative investigations of expression profiles. We conclude that RNA-seq based transcriptome characterization would expedite genetic network analyses and contribute the understanding of biologic functions in S. fimicola.