Project description:Pleurotus ostreatus, also known as the oyster mushroom, is an active lignin decomposer in the forests. The genomes of the monokaryotic strains PC15 and PC9 have been used to characterize the content and distribution of transposable elements. This study analyzes the impact of transposable element insertions on the global transcriptome of P. ostreatus. The transcriptome of PC15 and PC9 has been analyzed in exponential growth during submerged fermentation in malt-yeast extract-sucrose medium RNAseq of two P. ostreatus strains: PC15 and PC9
Project description:Pleurotus ostreatus, also known as the oyster mushroom, is an active lignin decomposer in the forests. The genomes of the monokaryotic strains PC15 and PC9 have been used to characterize the content and distribution of transposable elements. This study analyzes the impact of transposable element insertions on the global transcriptome of P. ostreatus. The transcriptome of PC15 and PC9 has been analyzed in exponential growth during submerged fermentation in malt-yeast extract-sucrose medium
Project description:We studied the biodegradation of green polyethylene (GP) by Pleurotus ostreatus. The GP was developed from renewable raw materials to help to reduce the emissions of greenhouse gases. However, little information regarding the biodegradation of GP discarded in the environment is available. P. ostreatus is a lignocellulolytic fungus that has been used in bioremediation processes for agroindustrial residues, pollutants, and recalcitrant compounds. Recently, we showed the potential of this fungus to degrade oxo-biodegradable polyethylene. GP plastic bags were exposed to sunlight for up to 120 days to induce the initial photodegradation of the polymers. After this period, no cracks, pits, or new functional groups in the structure of GP were observed. Fragments of these bags were used as the substrate for the growth of P. ostreatus. After 30 d of incubation, physical and chemical alterations in the structure of GP were observed. We conclude that the exposure of GP to sunlight and its subsequent incubation in the presence of P. ostreatus can decrease the half-life of GP and facilitate the mineralization of these polymers.
Project description:In this study, we analyzed the genome-wide epigenetic and transcriptional patterns of the white-rot basidiomycete Pleurotus ostreatus throughout its life cycle. Our results performed by using high-throughput sequencing analyses revealed that strain-specific DNA methylation profiles are primarily involved in the repression of transposon activity, and suggest that 21 nt small RNAs play a key role in transposon silencing.Furthermore, we provide evidence that transposon-associated DNA methylation, but not sRNA production, is directly involved in the silencing of genes surrounded by transposons. Finally, we identified key genes activated in the fruiting process through the comparative analysis of transcriptomes.
Project description:The aim of this study was to evaluate the effect of high selenium (Se) concentrations on morphophysiological and ultrastructural properties of Pleurotus ostreatus. Mycelium growth was good in media enriched with 5.0, 10.0, and 20.0 mg L(-1) of Se, concentration of 500.0 mg L(-1) strongly inhibited growth, and 1000.0 mg L(-1) was the minimum inhibitory concentration. Contrary to thin-walled, hyaline, branched, and anastomized hyphae with clamp-connections in the control, at Se concentrations of 100.0 and 500.0 mg L(-1), they were noticeably short, frequently septed and branched, with a more intensive extracellular matrix, and without clamp-connections. At high Se concentrations, hyphae with intact membrane, without cellular contents, with a high level of vacuolization, and with numerous proteinaceous bodies were observed. Biomass yield ranged between 11.8 g L(-1), in the control, and 6.8 g L(-1), at an Se concentration of 100.0 mg L(-1), while no production was detected at a concentration of 500.0 mg L(-1). Se content in the mycelia reached a peak (938.9 μg g(-1)) after cultivation in the medium enriched with Se at the concentration of 20.0 mg L(-1), while the highest absorption level (53.25%) was found in the medium enriched with 5.0 mg L(-1) Se.
Project description:The analysis of Pleurotus ostreatus genome reveals the presence of automatically annotated 53 lipase and 34 carboxylesterase putative coding-genes. Since no biochemical or physiological data are available so far, a functional approach was applied to identify lipases from P. ostreatus. In the tested growth conditions, four lipases were found expressed, with different patterns depending on the used C source. Two of the four identified proteins (PleoLip241 and PleoLip369), expressed in both analysed conditions, were chosen for further studies, such as an in silico analysis and their molecular characterization. To overcome limits linked to native production, a recombinant expression approach in the yeast Pichia pastoris was applied. Different expression levels were obtained: PleoLip241 reached a maximum activity of 4000 U/L, whereas PleoLip369 reached a maximum activity of 700 U/L. Despite their sequence similarity, these enzymes exhibited different substrate specificity and diverse stability at pH, temperature, and presence of metals, detergents and organic solvents. The obtained data allowed classifying PleoLip241 as belonging to the "true lipase" family. Indeed, by phylogenetic analysis the two proteins fall in different clusters. PleoLip241 was used to remove the hydrophobic layer from wool surface in order to improve its dyeability. The encouraging results obtained with lipase treated wool led to forecast PleoLip241 applicability in this field.
Project description:Growing concerns regarding the impact of the accumulation of plastic waste over several decades on the environmental have led to the development of biodegradable plastic. These plastics can be degraded by microorganisms and absorbed by the environment and are therefore gaining public support as a possible alternative to petroleum-derived plastics. Among the developed biodegradable plastics, oxo-biodegradable polymers have been used to produce plastic bags. Exposure of this waste plastic to ultraviolet light (UV) or heat can lead to breakage of the polymer chains in the plastic, and the resulting compounds are easily degraded by microorganisms. However, few studies have characterized the microbial degradation of oxo-biodegradable plastics. In this study, we tested the capability of Pleurotus ostreatus to degrade oxo-biodegradable (D2W) plastic without prior physical treatment, such as exposure to UV or thermal heating. After 45 d of incubation in substrate-containing plastic bags, the oxo-biodegradable plastic, which is commonly used in supermarkets, developed cracks and small holes in the plastic surface as a result of the formation of hydroxyl groups and carbon-oxygen bonds. These alterations may be due to laccase activity. Furthermore, we observed the degradation of the dye found in these bags as well as mushroom formation. Thus, P. ostreatus degrades oxo-biodegradable plastics and produces mushrooms using this plastic as substrate.
Project description:Telomeres are structural and functional chromosome regions that are essential for the cell cycle to proceed normally. They are, however, difficult to map genetically and to identify in genome-wide sequence programs because of their structure and repetitive nature. We studied the telomeric and subtelomeric organization in the basidiomycete Pleurotus ostreatus using a combination of molecular and bioinformatics tools that permitted us to determine 19 out of the 22 telomeres expected in this fungus. The telomeric repeating unit in P. ostreatus is TTAGGG, and the numbers of repetitions of this unit range between 25 and 150. The mapping of the telomere restriction fragments to linkage groups 6 and 7 revealed polymorphisms compatible with those observed by pulsed field gel electrophoresis separation of the corresponding chromosomes. The subtelomeric regions in Pleurotus contain genes similar to those described in other eukaryotic systems. The presence of a cluster of laccase genes in chromosome 6 and a bipartite structure containing a Het-related protein and an alcohol dehydrogenase are especially relevant; this bipartite structure is characteristic of the Pezizomycotina fungi Neurospora crassa and Aspergillus terreus. As far as we know, this is the first report describing the presence of such structures in basidiomycetes and the location of a laccase gene cluster in the subtelomeric region, where, among others, species-specific genes allowing the organism to adapt rapidly to the environment usually map.