Project description:Cytokines of the IL-1 family are important modulators of obesity-induced inflammation and the development of systemic insulin resistance. Here, we report that IL-37, a newly-described antiinflammatory member of the IL-1 family, affects obesity-induced inflammation and insulin resistance. IL-37 transgenic mice (IL-37tg) did not develop an obese phenotype in response to a high-fat diet (HFD). Unlike WT mice, IL-37tg mice exhibited reduced numbers of adipose tissue macrophages and preserved glucose tolerance and insulin sensitivity after 16 weeks of HFD. A short-term HFD intervention revealed that the IL-37-mediated improvement in glucose tolerance is independent of bodyweight. IL-37tg mice manifested a beneficial metabolic profile with higher circulating levels of the anti-inflammatory adipokine adiponectin. In vitro treatment of differentiating adipocytes with recombinant IL-37 reduced adipogenesis. The beneficial effects of recombinant IL-37 involved activation of AMPK signaling. In humans, steady-state IL-37 adipose tissue mRNA levels were positively correlated with insulin sensitivity, lower adipose tissue levels of leptin and a lower inflammatory status of the adipose tissue. These findings reveal IL-37 as an important anti-inflammatory modulator during obesity-induced inflammation and insulin resistance in both mice and humans and suggest that IL-37 is a potential target for the treatment of obesity-induced insulin resistance and type 2 diabetes. Gene arrays were performed on epidydimal white adipose tissue samples from wild type and human IL37-overexpressing transgenic mice fed a high fat diet for 16 weeks.
Project description:Cytokines of the IL-1 family are important modulators of obesity-induced inflammation and the development of systemic insulin resistance. Here, we report that IL-37, a newly-described antiinflammatory member of the IL-1 family, affects obesity-induced inflammation and insulin resistance. IL-37 transgenic mice (IL-37tg) did not develop an obese phenotype in response to a high-fat diet (HFD). Unlike WT mice, IL-37tg mice exhibited reduced numbers of adipose tissue macrophages and preserved glucose tolerance and insulin sensitivity after 16 weeks of HFD. A short-term HFD intervention revealed that the IL-37-mediated improvement in glucose tolerance is independent of bodyweight. IL-37tg mice manifested a beneficial metabolic profile with higher circulating levels of the anti-inflammatory adipokine adiponectin. In vitro treatment of differentiating adipocytes with recombinant IL-37 reduced adipogenesis. The beneficial effects of recombinant IL-37 involved activation of AMPK signaling. In humans, steady-state IL-37 adipose tissue mRNA levels were positively correlated with insulin sensitivity, lower adipose tissue levels of leptin and a lower inflammatory status of the adipose tissue. These findings reveal IL-37 as an important anti-inflammatory modulator during obesity-induced inflammation and insulin resistance in both mice and humans and suggest that IL-37 is a potential target for the treatment of obesity-induced insulin resistance and type 2 diabetes.
Project description:Obesity-induced inflammation metabolic dysfunction, but the mechanisms remain elusive. Here we showed that the innate immune factor IRF3 is a direct transcriptional regulator of glucose homeostasis through induction of endogenous FAHFA hydrolase Aig1 in adipocytes. Adipocyte-specific knockout IRF3 protects mice against high-fat diet-induced insulin resistance, whereas overexpression of IRF3 in adipocytes promotes insulin resistance on a high-fat diet. Furthermore, pharmacological inhibition of AIG1 reversed obesity-induced insulin resistance and restored glucose homeostasis in the setting of adipocyte IRF3 overexpression. We therefore, identify the adipocyte IRF3/AIG1 axis as a crucial link between obesity-induced inflammation and insulin resistance and suggest an approach for limiting the metabolic dysfunction accompanying obesity.
Project description:Natural killer (NK) cells contribute to the development of obesity-associated insulin resistance. We demonstrate that in mice obesity promotes the expansion of interleukin-6 receptor (IL6Ra)-expressing NK cells, which also express a number of other myeloid lineage genes such as the colony-stimulating-factor 1 receptor (Csf1r). Selective ablation of Csf1r- expressing NK cells prevents obesity and insulin resistance. Moreover, conditional inactivation of IL6Ra or Stat3 in NK cells limits obesity-associated formation of myeloid signature NK cells, protects from obesity, insulin resistance and obesity-associated inflammation. Also in humans IL6Ra+ NK cells increase in obesity, correlate with markers of systemic low-grade inflammation and their gene expression profile overlaps with characteristic gene sets of NK cells in obese mice. Collectively, we demonstrate that obesity-associated inflammation and metabolic disturbances depend on IL-6/Stat3-dependent formation of distinct NK cells, which may provide a novel target for the treatment of obesity, metaflammation-associated pathologies and diabetes.
Project description:Tissue inflammation is a key factor underlying insulin resistance in established obesity. Several models of immuno-compromised mice are protected from obesity-induced insulin resistance. However, it is unanswered whether inflammation triggers systemic insulin resistance or vice versa in obesity. The purpose of this study was to assess these questions. 8-week-old C57BL/6J male mice was treated with 60% HFD for 0 day (NCD), 3 days, and 7 days. Eipididymal fat was fractionated. Each groups have three replicates.
Project description:Obesity is associated with chronic low-grade white adipose tissue (WAT) inflammation that can contribute to the development of insulin resistance in mammals. Previous studies have identified interleukin (IL)-12 as a critical upstream regulator of WAT inflammation and metabolic dysfunction during obesity, however, the cell types and mechanisms that initiate WAT IL-12 production remain unclear. Analysis of mouse and human WAT single cell transcriptomic datasets, IL-12 reporter mice, and IL-12p70 protein levels by ELISA identified activated conventional type 1 dendritic cells (cDC1s) as the cellular source of WAT IL-12 during diet-induced obesity. cDC1s were required for the development of obesity-associated inflammation by increasing group 1 innate lymphocyte interferon (IFN)-γ production and inflammatory macrophage accumulation. Inducible depletion of cDC1s increased WAT insulin sensitivity and systemic glucose tolerance during diet-induced obesity. Endocytosis of apoptotic bodies containing self-DNA by WAT cDC1 drove STING-dependent IL-12 production. Together, these results suggest that WAT cDC1s act as critical regulators of adipose tissue inflammation and metabolic homeostasis during obesity.
Project description:Tissue inflammation is a key factor underlying insulin resistance in established obesity. Several models of immuno-compromised mice are protected from obesity-induced insulin resistance. However, it is unanswered whether inflammation triggers systemic insulin resistance or vice versa in obesity. The purpose of this study was to assess these questions.
Project description:Toll-like receptors/Interleukin-1 receptor (IL-1R) signaling plays an important role in High-fat diet (HFD)-induced adipose tissue dysfunction contributing to obesity-associated metabolic syndromes. Here, we show an unconventional IL-1R-IRAKM (IL-1R-associated kinase M)-Slc25a1 signaling axis in adipocytes that reprograms lipogenesis to promote diet-induced obesity. Adipocyte-specific deficiency of IRAKM reduced HFD-induced body weight gain, increased whole body energy expenditure and improved insulin resistance, associated with decreased lipid accumulation and adipocyte cell sizes. IL-1β stimulation induced the translocation of IRAKM Myddosome to mitochondria to promote de novo lipogenesis in adipocytes. Mechanistically, IRAKM interacts with and phosphorylates mitochondrial citrate carrier Slc25a1 to promote IL-1β-induced mitochondrial citrate transport to cytosol and de novo lipogenesis. Moreover, IRAKM-Slc25a1 axis mediates IL-1β induced Pgc1a acetylation to regulate thermogenic gene expression in adipocytes. IRAKM kinase-inactivation also attenuated HFD-induced obesity. Taken together, our study suggests that the IL-1R-IRAKM-Slc25a1 signaling axis tightly links inflammation and adipocyte metabolism, indicating a novel therapeutic target for obesity.