Project description:Multiple populations from the North Pacific and the North Atlantic of the northern acorn barnacle Semibalanus balanoides Raw sequence reads
Project description:Barnacles are conspicuous members of rocky intertidal communities and settlement of the final larval stage, the cyprid, is influenced by the presence of biofilms. While modulation of cyprid settlement by biofilms has been studied extensively, the acquisition of a specific microbiome by the settling larva has not. This study investigated settlement in the field of Semibalanus balanoides in two consecutive years when the composition of the benthic bacterial community differed. In both years, settling cyprids adopted a specific sub-set of benthic bacteria that was distinct from the planktonic cyprid and the benthos. This microbiome was consistent, regardless of annual variability in the benthic community structure, and established within hours of settlement. The results imply that a natural process of selection occurs during the critical final transition of S. balanoides to the sessile form. The apparent consistency of this process between years suggests that optimal growth and survival of barnacles could depend upon a complex inter-kingdom relationship, as has been demonstrated in other animal systems.
Project description:Cypris larvae of barnacles are able to use a rapidly reversible temporary adhesion mechanism for exploring immersed surfaces. Despite decades of research interest, the means by which cyprids maintain attachment with surfaces prior to permanent settlement remain poorly understood. Here, we present novel observations on the morphology of 'footprints' of a putative adhesive secretion deposited by cyprids during surface exploration. Atomic force microscopy (AFM) was used to image footprints at high resolution and to acquire measurements of interaction forces. R-CH3- and R-NH2-terminated glass surfaces were used for comparison of footprint morphology, and it was noted that on R-NH2 each footprint comprised three times the volume of material deposited for footprints on R-CH3. Direct scaling of adhesion forces derived from AFM measurements did not adequately predict the real attachment tenacity of cyprids, and it is suggested that a mixture of 'wet' and 'dry' adhesive mechanisms may be at work in cyprid adhesion. High-resolution images of cyprid footprints are presented that correlate well with the known morphology of the attachment structures.
Project description:BackgroundNatural populations inhabiting the rocky intertidal experience multiple ecological stressors and provide an opportunity to investigate how environmental differences influence microbiomes over small geographical scales. However, very few microbiome studies focus on animals that inhabit the intertidal. In this study, we investigate the microbiome of the intertidal barnacle Semibalanus balanoides. We first describe the microbiome of two body tissues: the feeding appendages, or cirri, and the gut. Next, we examine whether there are differences between the microbiome of each body tissue of barnacles collected from the thermally extreme microhabitats of the rocky shores' upper and lower tidal zones.ResultsOverall, the microbiome of S. balanoides consisted of 18 phyla from 408 genera. Our results showed that although cirri and gut microbiomes shared a portion of their amplicon sequence variants (ASVs), the microbiome of each body tissue was distinct. Over 80% of the ASVs found in the cirri were also found in the gut, and 44% of the ASVs found in the gut were also found in the cirri. Notably, the gut microbiome was not a subset of the cirri microbiome. Additionally, we identified that the cirri microbiome was responsive to microhabitat differences.ConclusionResults from this study indicate that S. balanoides maintains distinct microbiomes in its cirri and gut tissues, and that the gut microbiome is more stable than the cirri microbiome between the extremes of the intertidal.
Project description:Population genetic characteristics are shaped by the life-history traits of organisms and the geologic history of their habitat. This study provides a neutral framework for understanding the population dynamics and opportunities for selection in Semibalanus balanoides, a species that figures prominently in ecological and evolutionary studies in the Atlantic intertidal. We used mitochondrial DNA (mtDNA) control region (N = 131) and microsatellite markers (?40 individuals/site/locus) to survey populations of the broadly dispersing acorn barnacle from 8 sites spanning 800 km of North American coast and 1 site in Europe. Patterns of mtDNA sequence evolution were consistent with larger population sizes in Europe and population expansion at the conclusion of the last ice age, approximately 20?000 years ago, in North America. A significant portion of mitochondrial diversity was partitioned between the continents (?(ST) = 0.281), but there was only weak structure observed from mtDNA within North America. Microsatellites showed significant structuring between the continents (F(ST) = 0.021) as well as within North America (F(ST) = 0.013). Isolation by distance in North America was largely driven by a split between populations south of Cape Cod and all others (P < 10(-4)). The glacial events responsible for generating allelic diversity at mtDNA and microsatellites may also be responsible for generating selectable variation at metabolic enzymes in S. balanoides.