Project description:Background: Array comparative genomic hybridization (aCGH) is commonly used to screen different types of genetic variation in humans and model species. Here, we performed aCGH using an oligonucleotide gene-expression array for a non-model species, the intertidal snail Littorina saxatilis. First, we tested what types of genetic variation can be detected by this method using direct re-sequencing and comparison to the Littorina genome draft. Secondly, we performed a genome-wide comparison of four closely related Littorina species: L. fabalis, L. compressa, L. arcana and L. saxatilis and of populations of L. saxatilis found in Spain, Britain and Sweden. Finally, we tested whether we could identify genetic variation underlying “Crab” and “Wave” ecotypes of L. saxatilis. Results: We could reliably detect copy number variations, deletions and high sequence divergence (i.e. above 3%), but not single nucleotide polymorphisms. The overall hybridization pattern and number of significantly diverged genes were in close agreement with earlier phylogenetic reconstructions based on single genes. The trichotomy of L. arcana, L. compressa and L. saxatilis could not be resolved and we argue that these divergence events have occurred recently and very close in time. We found evidence for high levels of segmental duplication in the Littorina genome (10% of the transcripts represented on the array and up to 23% of the analyzed genomic fragments); duplicated genes and regions were mostly the same in all analyzed species. Finally, this method discriminated geographically distant populations of L. saxatilis, but we did not detect any significant genome divergence associated with ecotypes of L. saxatilis. Conclusions: The present study provides new information on the sensitivity and the potential use of oligonucleotide arrays for genotyping of non-model organisms. Applying this method to Littorina species yields insights into genome evolution following the recent species radiation and supports earlier single-gene based phylogenies. Genetic differentiation of L. saxatilis ecotypes was not detected in this study, despite pronounced innate phenotypic differences. The reason may be that these differences are due to single-nucleotide polymorphisms.
Project description:Background: Array comparative genomic hybridization (aCGH) is commonly used to screen different types of genetic variation in humans and model species. Here, we performed aCGH using an oligonucleotide gene-expression array for a non-model species, the intertidal snail Littorina saxatilis. First, we tested what types of genetic variation can be detected by this method using direct re-sequencing and comparison to the Littorina genome draft. Secondly, we performed a genome-wide comparison of four closely related Littorina species: L. fabalis, L. compressa, L. arcana and L. saxatilis and of populations of L. saxatilis found in Spain, Britain and Sweden. Finally, we tested whether we could identify genetic variation underlying M-bM-^@M-^\CrabM-bM-^@M-^] and M-bM-^@M-^\WaveM-bM-^@M-^] ecotypes of L. saxatilis. Results: We could reliably detect copy number variations, deletions and high sequence divergence (i.e. above 3%), but not single nucleotide polymorphisms. The overall hybridization pattern and number of significantly diverged genes were in close agreement with earlier phylogenetic reconstructions based on single genes. The trichotomy of L. arcana, L. compressa and L. saxatilis could not be resolved and we argue that these divergence events have occurred recently and very close in time. We found evidence for high levels of segmental duplication in the Littorina genome (10% of the transcripts represented on the array and up to 23% of the analyzed genomic fragments); duplicated genes and regions were mostly the same in all analyzed species. Finally, this method discriminated geographically distant populations of L. saxatilis, but we did not detect any significant genome divergence associated with ecotypes of L. saxatilis. Conclusions: The present study provides new information on the sensitivity and the potential use of oligonucleotide arrays for genotyping of non-model organisms. Applying this method to Littorina species yields insights into genome evolution following the recent species radiation and supports earlier single-gene based phylogenies. Genetic differentiation of L. saxatilis ecotypes was not detected in this study, despite pronounced innate phenotypic differences. The reason may be that these differences are due to single-nucleotide polymorphisms. Genomic DNA samples of L. fabalis, L. compressa, L. arcana and 3 geographic populations x 2 ecotypes of L. saxatilis (n=4 per group) have been hybridized to a transcriptomic oligoarray.
Project description:BackgroundArray comparative genomic hybridization (aCGH) is commonly used to screen different types of genetic variation in humans and model species. Here, we performed aCGH using an oligonucleotide gene-expression array for a non-model species, the intertidal snail Littorina saxatilis. First, we tested what types of genetic variation can be detected by this method using direct re-sequencing and comparison to the Littorina genome draft. Secondly, we performed a genome-wide comparison of four closely related Littorina species: L. fabalis, L. compressa, L. arcana and L. saxatilis and of populations of L. saxatilis found in Spain, Britain and Sweden. Finally, we tested whether we could identify genetic variation underlying "Crab" and "Wave" ecotypes of L. saxatilis.ResultsWe could reliably detect copy number variations, deletions and high sequence divergence (i.e. above 3%), but not single nucleotide polymorphisms. The overall hybridization pattern and number of significantly diverged genes were in close agreement with earlier phylogenetic reconstructions based on single genes. The trichotomy of L. arcana, L. compressa and L. saxatilis could not be resolved and we argue that these divergence events have occurred recently and very close in time. We found evidence for high levels of segmental duplication in the Littorina genome (10% of the transcripts represented on the array and up to 23% of the analyzed genomic fragments); duplicated genes and regions were mostly the same in all analyzed species. Finally, this method discriminated geographically distant populations of L. saxatilis, but we did not detect any significant genome divergence associated with ecotypes of L. saxatilis.ConclusionsThe present study provides new information on the sensitivity and the potential use of oligonucleotide arrays for genotyping of non-model organisms. Applying this method to Littorina species yields insights into genome evolution following the recent species radiation and supports earlier single-gene based phylogenies. Genetic differentiation of L. saxatilis ecotypes was not detected in this study, despite pronounced innate phenotypic differences. The reason may be that these differences are due to single-nucleotide polymorphisms.
Project description:Natural selection often produces parallel phenotypic changes in response to a similar adaptive challenge. However, the extent to which parallel gene expression differences and genomic divergence underlie parallel phenotypic traits and whether they are decoupled or not remains largely unexplored. We performed a population genomic study of parallel local adaptation among replicate ecotype pairs of the rough periwinkle (Littorina saxatilis) at a regional geographical scale (NW Spain). We show that phenotypic divergence followed complex evolutionary paths, affecting multiple loci, and including the parallel recruitment of the same genes as well as completely different genes in distinct ecotype pairs. The majority of divergent genes were divergent either for gene expression or coding sequence, but not for both simultaneously, providing evidence for a decoupled evolution among regulatory and coding regions. Overall, our findings suggest that gene expression and coding sequences may evolve independently as a result of being distinctly targeted by evolutionary constraints, and that divergent selection significantly contributed to the process of molecular differentiation among ecotype pairs.
Project description:Transcriptional profile of snails exposed to irradiated E. paraensei miricidia and four days later challenged with S. mansoni miricidia. Compared to snails exposed to only irradiated E. paraensei miricidia.
Project description:Natural selection often produces parallel phenotypic changes in response to a similar adaptive challenge. However, the extent to which parallel gene expression differences and genomic divergence underlie parallel phenotypic traits and whether they are decoupled or not remains largely unexplored. We performed a population genomic study of parallel local adaptation among replicate ecotype pairs of the rough periwinkle (Littorina saxatilis) at a regional geographical scale (NW Spain). We show that phenotypic divergence followed complex evolutionary paths, affecting multiple loci, and including the parallel recruitment of the same genes as well as completely different genes in distinct ecotype pairs. The majority of divergent genes were divergent either for gene expression or coding sequence, but not for both simultaneously, providing evidence for a decoupled evolution among regulatory and coding regions. Overall, our findings suggest that gene expression and coding sequences may evolve independently as a result of being distinctly targeted by evolutionary constraints, and that divergent selection significantly contributed to the process of molecular differentiation among ecotype pairs.
Project description:A fundamental problem in biology is the molecular basis for divergence among related organisms. We have investigated the level of divergence of transcription factor binding sites for two key factors that regulate developmental processes in the budding yeasts. The genomic binding locations for the Ste12 and Tec1 transcription factors in S. cerevisiae, S. mikatae and S. bayanus were mapped by chromatin immunoprecipitation combined with microarrays (chIP chip)1, 2 and compared to one another. While there was a large core network which was conserved in all three species, there were many instances of binding events whose relative levels differ significantly quantitatively in one species relative to another and as well as species-specific binding events. One interesting class of genes were identified that were bound only in S. mikatae and S. bayanus; many of these genes are targets of Ste12 in haploid strains of S. cerevisiae, suggesting that S. cerevisiae has uniquely acquired the ability to differentially regulate these genes in haploid and diploid cells in these species. To extend these studies, the transcriptional network for the Ste12 homologue (Cph1) in Candida albicans was also mapped and compared to the Saccharomyces species. Again, there were several genes bound by Cph1 which are involved in mating in S. cerevisiae, suggesting that the precise delineation between many mating and pseudohyphal targets by Ste12 may be specific to S. cerevisiae. Overall our results demonstrate that transcription binding sites differ faster than gene content indicating that gene regulation at the level of transcription factor binding is likely to be a major mode of evolutionary divergence between related species. We expect that this divergence is essential for the distinct ecological niches inhabited by these organisms. Keywords: chIP-chip ChIP-chip was performed on Ste12 and Tec1 from S. cerevisiae, S. mikatae and S. bayanus in addition to Cph1 from S. cerevisiae. Three biological replicates were performed for each factor in each species with one replicate representing a dye swap.