Project description:Telomeric ORFs (TLOs) in pathogenic Candida spp. encode Mediator subunits that regulate the transcription of distinct subsets of genes
Project description:Analysis of the role of the Candida dubliniensis Telomeric (TLO) genes and MED3, encoding subunits of Mediator, in regulating transcription The transcriptional response of a Candida dubliniensis TLO1/TLO2 double (null) mutant was analysed. Reintegrant strains harboring TLO1 or TLO2 were compared to this null mutant to elucidate the individual role of each ORF. The role of MED3 was compared also. 9 experiemental parameters were analysed, each carried out in triplicate or quadruplicate
Project description:Analysis of the role of the Candida dubliniensis Telomeric (TLO) genes and MED3, encoding subunits of Mediator, in regulating transcription The transcriptional response of a Candida dubliniensis TLO1/TLO2 double (null) mutant was analysed. Reintegrant strains harboring TLO1 or TLO2 were compared to this null mutant to elucidate the individual role of each ORF. The role of MED3 was compared also.
Project description:The opportunistic human pathogens, Candida albicans and Candida dubliniensis, are closely related species displaying large differences in virulence, but the reasons for these differences are elusive. Microarray-based comparative analysis of global gene expression in the two species incubated on reconstituted human oral epithelium (RHE) was used to identify specific and common changes in gene expression and find novel C. albicans virulence genes
Project description:We isolated Candida dubliniensis from a nonhuman source, namely, tick samples from an Irish seabird colony. The species was unambiguously identifi ed by phenotypic and genotypic means. Analysis of the 5.8S rRNA gene showed that the environmental isolates belong to C. dubliniensis genotype 1.
Project description:Candida albicans and Candida dubliniensis are closely related species displaying differences in virulence and genome content, therefore providing potential opportunities to identify novel C. albicans virulence genes. C. albicans gene arrays were used for comparative analysis of global gene expression in the two species in reconstituted human oral epithelium (RHE). C. albicans (SC5314) showed upregulation of hypha-specific and virulence genes within 30 min postinoculation, coinciding with rapid induction of filamentation and increased RHE damage. C. dubliniensis (CD36) showed no detectable upregulation of hypha-specific genes, grew as yeast, and caused limited RHE damage. Several genes absent or highly divergent in C. dubliniensis were upregulated in C. albicans. One such gene, SFL2 (orf19.3969), encoding a putative heat shock factor, was deleted in C. albicans. ΔΔsfl2 cells failed to filament under a range of hypha-inducing conditions and exhibited greatly reduced RHE damage, reversed by reintroduction of SFL2 into the ΔΔsfl2 strain. Moreover, SFL2 overexpression in C. albicans triggered hyphal morphogenesis. Although SFL2 deletion had no apparent effect on host survival in the murine model of systemic infection, ΔΔsfl2 strain-infected kidney tissues contained only yeast cells. These results suggest a role for SFL2 in morphogenesis and an indirect role in C. albicans pathogenesis in epithelial tissues.
Project description:Candida albicans and Candida dubliniensis are closely related species displaying differences in virulence and genome content, therefore providing potential opportunities to identify novel C. albicans virulence genes. C. albicans gene arrays were used for comparative analysis of global gene expression in the two species in reconstituted human oral epithelium (RHE). C. albicans (SC5314) showed upregulation of hypha-specific and virulence genes within 30 min postinoculation, coinciding with rapid induction of filamentation and increased RHE damage. C. dubliniensis (CD36) showed no detectable upregulation of hypha-specific genes, grew as yeast, and caused limited RHE damage. Several genes absent or highly divergent in C. dubliniensis were upregulated in C. albicans. One such gene, SFL2 (orf19.3969), encoding a putative heat shock factor, was deleted in C. albicans. ΔΔsfl2 cells failed to filament under a range of hypha-inducing conditions and exhibited greatly reduced RHE damage, reversed by reintroduction of SFL2 into the ΔΔsfl2 strain. Moreover, SFL2 overexpression in C. albicans triggered hyphal morphogenesis. Although SFL2 deletion had no apparent effect on host survival in the murine model of systemic infection, ΔΔsfl2 strain-infected kidney tissues contained only yeast cells. These results suggest a role for SFL2 in morphogenesis and an indirect role in C. albicans pathogenesis in epithelial tissues.