Project description:Constitutively active MYC and reactivated telomerase often co-exist in cancers. While the reactivation of telomerase is thought to be essential for replicative immortality, MYC, in conjunction with co-factors, confers several growth advantages to cancer cells. However, it is unclear which co-factors sustain elevated MYC activity in tumors . Here, we identify TERT, the catalytic subunit of telomerase, as a novel regulator of MYC stability in cancers. Binding of TERT to MYC stabilizes its levels on chromatin, contributing to either activation or repression of its target genes. Mechanistically, TERT regulates MYC ubiquitination and stability, and this effect of TERT is independent of its role on telomeres. Genetic inhibition and knocking out of TERT phenocopied the loss of MYC, resulting in reduced disease burden of early- and late-stage MYC-driven murine lymphomas. Conversly, the ectopic expression of TERT could substitute for reduced MYC in these functions. Finally we show that TERT null mice, unlike Terc null mice, show delayed onset of MYC induced lymphomagenesis. Accordingly, inhibiting TERT function in primary human leukemia cells blocked the expression of MYC targets, while Terc depletion had no effects . Based on our data, we conclude that the re-expression of TERT, a direct MYC target in tumors, provides a feed-forward mechanism to potentiate MYC-dependent oncogenesis. P493 cells were stably infected with the following viruses: pLKO shControl and pLKO shTERT.
Project description:Constitutively active MYC and reactivated telomerase often co-exist in cancers. While the reactivation of telomerase is thought to be essential for replicative immortality, MYC, in conjunction with co-factors, confers several growth advantages to cancer cells. However, it is unclear which co-factors sustain elevated MYC activity in tumours . Here, we identify TERT, the catalytic subunit of telomerase, as a novel regulator of MYC stability in cancers. Binding of TERT to MYC stabilizes its levels on chromatin, contributing to either activation or repression of its target genes. Mechanistically, TERT regulates MYC ubiquitination and stability, and this effect of TERT is independent of its role on telomeres. Genetic inhibition and knocking out of TERT phenocopied the loss of MYC, resulting in reduced disease burden of early- and late-stage MYC-driven murine lymphomas. Conversly, the ectopic expression of TERT could substitute for reduced MYC in these functions. Finally we show that TERT null mice, unlike Terc null mice, show delayed onset of MYC induced lymphomagenesis. Accordingly, inhibiting TERT function in primary human leukemia cells blocked the expression of MYC targets, while Terc depletion had no effects . Based on our data, we conclude that the re-expression of TERT, a direct MYC target in tumors, provides a feed-forward mechanism to potentiate MYC-dependent oncogenesis. ChIP was performed using anti-MYC (sc-764) in primary lymphoma cells from Eµ-Myc;Tert -/- mice, Eµ-Myc;Tert +/+ mice, or in P493 cells treated with shTert, P493 shTerc and shControl.
Project description:Constitutively active MYC and reactivated telomerase often co-exist in cancers. While the reactivation of telomerase is thought to be essential for replicative immortality, MYC, in conjunction with co-factors, confers several growth advantages to cancer cells. However, it is unclear which co-factors sustain elevated MYC activity in tumors . Here, we identify TERT, the catalytic subunit of telomerase, as a novel regulator of MYC stability in cancers. Binding of TERT to MYC stabilizes its levels on chromatin, contributing to either activation or repression of its target genes. Mechanistically, TERT regulates MYC ubiquitination and stability, and this effect of TERT is independent of its role on telomeres. Genetic inhibition and knocking out of TERT phenocopied the loss of MYC, resulting in reduced disease burden of early- and late-stage MYC-driven murine lymphomas. Conversly, the ectopic expression of TERT could substitute for reduced MYC in these functions. Finally we show that TERT null mice, unlike Terc null mice, show delayed onset of MYC induced lymphomagenesis. Accordingly, inhibiting TERT function in primary human leukemia cells blocked the expression of MYC targets, while Terc depletion had no effects . Based on our data, we conclude that the re-expression of TERT, a direct MYC target in tumors, provides a feed-forward mechanism to potentiate MYC-dependent oncogenesis.
Project description:Constitutively active MYC and reactivated telomerase often co-exist in cancers. While the reactivation of telomerase is thought to be essential for replicative immortality, MYC, in conjunction with co-factors, confers several growth advantages to cancer cells. However, it is unclear which co-factors sustain elevated MYC activity in tumours . Here, we identify TERT, the catalytic subunit of telomerase, as a novel regulator of MYC stability in cancers. Binding of TERT to MYC stabilizes its levels on chromatin, contributing to either activation or repression of its target genes. Mechanistically, TERT regulates MYC ubiquitination and stability, and this effect of TERT is independent of its role on telomeres. Genetic inhibition and knocking out of TERT phenocopied the loss of MYC, resulting in reduced disease burden of early- and late-stage MYC-driven murine lymphomas. Conversly, the ectopic expression of TERT could substitute for reduced MYC in these functions. Finally we show that TERT null mice, unlike Terc null mice, show delayed onset of MYC induced lymphomagenesis. Accordingly, inhibiting TERT function in primary human leukemia cells blocked the expression of MYC targets, while Terc depletion had no effects . Based on our data, we conclude that the re-expression of TERT, a direct MYC target in tumors, provides a feed-forward mechanism to potentiate MYC-dependent oncogenesis.
Project description:Telomerase reverse transcriptase (TERT) and the noncoding telomerase RNA (TR) subunit constitute the core of telomerase. We now report that the putative F-box protein Pof8 is also a constitutive component of active telomerase in fission yeast. Pof8 functions in a hierarchical assembly pathway by promoting the binding of the Lsm2-8 complex to telomerase RNA, which in turn promotes binding of the catalytic subunit. Loss of Pof8 reduces TER1 stability, causes a severe assembly defect and results in critically short telomeres. Structure profile searches identified similarities between Pof8 and telomerase subunits from ciliated protozoa, making Pof8 next to TERT the most widely conserved telomerase subunits identified to date.
Project description:Reactivation of the telomerase reverse transcriptase subunit, TERT, is linked to tumourigenesis due to well-documented telomere-dependent and independent functions. The aim of this study was to investigate the effect of the telomerase inhibitor, MST-312, on TERT functions, focusing in particular, on its effects on MYC stabilty and MYC-regulated pathways, in order to assess its potential as a therapeutic agent. We demonstrate that MST-312 reduces MYC levels in cancer cells, leading to reduced MYC levels on chromatin, and subsequently affecting the MYC-regulated transcriptional program. As a result, MST-312 treatment increases the survival of lymphoma-bearing mice. Mechanistically, MST-312 affects the conformation of TERT, leading to TERT/Terc dissociation, and the subsequent loss of both its telomere-dependent and independent functions. Based on the presented data, we conclude that MST-312 treatment is a promising therapeutic strategy, in particular, in MYC-driven tumorus.
Project description:Reactivation of the telomerase reverse transcriptase subunit, TERT, is linked to tumourigenesis due to well-documented telomere-dependent and independent functions. The aim of this study was to investigate the effect of the telomerase inhibitor, MST-312, on TERT functions, focusing in particular, on its effects on MYC stabilty and MYC-regulated pathways, in order to assess its potential as a therapeutic agent. We demonstrate that MST-312 reduces MYC levels in cancer cells, leading to reduced MYC levels on chromatin, and subsequently affecting the MYC-regulated transcriptional program. As a result, MST-312 treatment increases the survival of lymphoma-bearing mice. Mechanistically, MST-312 affects the conformation of TERT, leading to TERT/Terc dissociation, and the subsequent loss of both its telomere-dependent and independent functions. Based on the presented data, we conclude that MST-312 treatment is a promising therapeutic strategy, in particular, in MYC-driven tumorus.
Project description:In our previous study, mice with pulmonary fibrosis induced by a bleomycin insult in the context of short telomeres develop pulmonary fibrosis. By using AAV9 vectors carrying the telomerase Tert gene to treat those mice, we explore the possibility of telomerase gene therapy as a possible treatment for IPF patients carrying short telomeres. To further understand gene expression changes undergoing in ATII cells upon telomerase activation, we isolated ATII cells from pulmonary fibrosis Tert-treated and empty vector-treated lungs at 1 week after AAV9 inoculation by FACS.