Project description:Cardiac hypertrophy is an independent risk factor for cardiovascular disease and heart failure. There is increasing evidence that microRNAs (miRNAs) play an important role in the regulation of messenger RNA (mRNA) and the pathogenesis of various cardiovascular diseases. However, the ability to comprehensively study cardiac hypertrophy on a gene regulatory level is impacted by the limited availability of human cardiomyocytes. Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) offer the opportunity for disease modeling. We utilized a previously established in vitro model of cardiac hypertrophy to interrogate the regulatory mechanism associated with the cardiac disease process. We performed miRNA sequencing and mRNA expression analysis on endothelin 1 (ET-1) stimulated hiPSC-CMs to describe associated RNA expression profiles. MicroRNA sequencing revealed over 250 known and 34 predicted novel miRNAs to be differentially expressed between ET-1stimulated and unstimulated control hiPSC-CMs. Messenger RNA expression analysis identified 731 probe sets with significant differential expression. Computational target prediction on significant differentially expressed miRNAs and mRNAs identified nearly 2000 target pairs. To characterize miRNA and mRNA expression patterns we utilized iCell Cardiomyocytes derived from human iPSCs (hiPSC-CMs). Based on preliminary dose-response and time-course studies, we stimulated these cells with ET-1 at 10-8M for 18h. We used unstimulated control (control-CM) and ET-1 stimulated (ET1-CM) hiPSCs from 3 separate experiments as triplicate data for this study. mRNA expression for the control-CM and ET1-CM samples was analyzed using GeneChip 3M-bM-^@M-^YIVT express arrays (Affymetrix).
Project description:Cardiac hypertrophy is an independent risk factor for cardiovascular disease and heart failure. There is increasing evidence that microRNAs (miRNAs) play an important role in the regulation of messenger RNA (mRNA) and the pathogenesis of various cardiovascular diseases. However, the ability to comprehensively study cardiac hypertrophy on a gene regulatory level is impacted by the limited availability of human cardiomyocytes. Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) offer the opportunity for disease modeling. We utilized a previously established in vitro model of cardiac hypertrophy to interrogate the regulatory mechanism associated with the cardiac disease process. We performed miRNA sequencing and mRNA expression analysis on endothelin 1 (ET-1) stimulated hiPSC-CMs to describe associated RNA expression profiles. MicroRNA sequencing revealed over 250 known and 34 predicted novel miRNAs to be differentially expressed between ET-1stimulated and unstimulated control hiPSC-CMs. Messenger RNA expression analysis identified 731 probe sets with significant differential expression. Computational target prediction on significant differentially expressed miRNAs and mRNAs identified nearly 2000 target pairs. To characterize miRNA and mRNA expression patterns we utilized iCell Cardiomyocytes derived from human iPSCs (hiPSC-CMs). Based on preliminary dose-response and time-course studies, we stimulated these cells with ET-1 at 10-8M for 18h. We used unstimulated control (control-CM) and ET-1 stimulated (ET1-CM) hiPSCs from 3 separate experiments as triplicate data for this study. For the analysis of miRNA expression changes after ET-1 stimulation, single-end small RNA sequencing was performed using the Ion Torrent Personal Genome Machine (PGMTM) sequencing platform.
Project description:Our previous single-cell RNA sequencing study in the adult human heart revealed that cardiomyocytes from both the atrium and ventricle display high activities of Krüppel-like factor 2 (KLF2) regulons. However, the role of the transcription factor KLF2 in cardiomyocyte biology remains largely unexplored. We employed transverse aortic constriction surgery in male C57BL/6J mice to develop an in vivo model of cardiac hypertrophy, and generated different in vitro cardiac hypertrophy models in neonatal rat ventricular myocytes and human embryonic stem cell-derived cardiomyocytes. Our results demonstrated a significant reduction in KLF2 expression during the progression of cardiac hypertrophy. In vitro, KLF2 deficiency exacerbates cardiac hypertrophy and enhances hypertrophic reprogramming, while KLF2 overexpression attenuates cardiac hypertrophy and reverses hypertrophic transcriptome reprogramming. Mechanistically, combined RNA-seq and cleavage under targets & tagmentation (CUT&Tag) analysis revealed that KLF2 exerts its protective effects by directly regulating a set of genes associated with cardiac hypertrophy. In vivo, KLF2 overexpression specifically in cardiomyocytes effectively prevents TAC-induced cardiac hypertrophy in mice. Additionally, we found that simvastatin elevates KLF2 expression in cardiomyocytes, which subsequently alleviates cardiomyocyte hypertrophy. This study provides the first evidence that transcription factor KLF2 serves as a negative regulator of cardiac hypertrophy. Our findings highlight the therapeutic potential of enhancing KLF2 expression, particularly through simvastatin administration, as a promising strategy in the treatment of cardiac hypertrophy.
Project description:Cardiac hypertrophy is an independent risk factor for cardiovascular disease and heart failure. There is increasing evidence that microRNAs (miRNAs) play an important role in the regulation of messenger RNA (mRNA) and the pathogenesis of various cardiovascular diseases. However, the ability to comprehensively study cardiac hypertrophy on a gene regulatory level is impacted by the limited availability of human cardiomyocytes. Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) offer the opportunity for disease modeling. We utilized a previously established in vitro model of cardiac hypertrophy to interrogate the regulatory mechanism associated with the cardiac disease process. We performed miRNA sequencing and mRNA expression analysis on endothelin 1 (ET-1) stimulated hiPSC-CMs to describe associated RNA expression profiles. MicroRNA sequencing revealed over 250 known and 34 predicted novel miRNAs to be differentially expressed between ET-1stimulated and unstimulated control hiPSC-CMs. Messenger RNA expression analysis identified 731 probe sets with significant differential expression. Computational target prediction on significant differentially expressed miRNAs and mRNAs identified nearly 2000 target pairs.
Project description:Cardiac hypertrophy is an independent risk factor for cardiovascular disease and heart failure. There is increasing evidence that microRNAs (miRNAs) play an important role in the regulation of messenger RNA (mRNA) and the pathogenesis of various cardiovascular diseases. However, the ability to comprehensively study cardiac hypertrophy on a gene regulatory level is impacted by the limited availability of human cardiomyocytes. Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) offer the opportunity for disease modeling. We utilized a previously established in vitro model of cardiac hypertrophy to interrogate the regulatory mechanism associated with the cardiac disease process. We performed miRNA sequencing and mRNA expression analysis on endothelin 1 (ET-1) stimulated hiPSC-CMs to describe associated RNA expression profiles. MicroRNA sequencing revealed over 250 known and 34 predicted novel miRNAs to be differentially expressed between ET-1stimulated and unstimulated control hiPSC-CMs. Messenger RNA expression analysis identified 731 probe sets with significant differential expression. Computational target prediction on significant differentially expressed miRNAs and mRNAs identified nearly 2000 target pairs.
Project description:Recent studies in non-human model systems have shown therapeutic potential of modified mRNA (modRNA) treatments for lysosomal storage diseases. Here, we assessed the efficacy of a modRNA treatment to restore the expression of the α-galactosidase (GLA) gene in a human cardiac model generated from induced-pluripotent stem cell-derived from two patients with Fabry disease. In line with the clinical phenotype, cardiomyocytes from Fabry patient’s induced pluripotent stem cells show accumulation of the glycosphinolipid Globotriaosylceramide (GB3), which is an α-galactosidase substrate. Further, the patient-specific cardiomyocytes have significant upregulation of lysosomal associated proteins. Upon modRNA treatment, a subset of lysosomal proteins were partially restored to wildtype levels, implying the rescue of the molecular phenotype associated with the Fabry genotype. Importantly, a significant reduction of GB3 levels was observed in GLA modRNA treated cardiomyocytes demonstrating that α-galactosidase enzymatic activity was restored. Together, our results validate the utility of patient IPSC-derived cardiomyocytes as a model to study disease processes in Fabry disease and the therapeutic potential of GLA modRNA treatment to reduce GB3 accumulation in the heart.
Project description:We investigate the effects of GLP-1 on diabetic cardiomyocytes (DCMs) model established by human induced pluripotent stem cells-derived cardiomyocytes (iPSC-CMs). Two subtypes of GLP-1, GLP-17-36 and GLP-19-36, were evaluated for their efficacy on hypertrophic phenotype, impaired calcium homeostasis and electrophysiological properties. RNA-seq was performed to reveal the underlying molecular mechanism of GLP-1. Our results demonstrated that GLP-17-36 and GLP-19-36 were able to ameliorate high glucose-induced hypertrophy phenotype and cardiac dysfunctions in DCM model based on iPSC-CMs. Our study provides a novel platform to unveil the cellular mechanisms of diabetic cardiomyopathy, which sheds light on discovering better targets for novel therapeutic interventions.
Project description:Cardiac hypertrophy is an important and independent risk factor for the development of cardiac myopathy that may lead to heart failure. Cardiac hypertrophy manifests as an enlargement of the individual cardiomyocytes, which impairs the function of the heart. The only way to cure end-stage cardiac myopathy is by heart transplantation, a possibility limited due to lack of donor hearts. Therefore, early diagnosis of cardiac hypertrophy is needed in order to be able to initiate interventions that may prevent further progression of the disease. The mechanisms underlying the development of cardiac hypertrophy are yet not well understood. To increase the knowledge about mechanisms and regulatory pathways involved in the progression of cardiac hypertrophy, we have developed a human induced pluripotent stem cell (hiPSC)-based in vitro model of cardiac hypertrophy and performed extensive characterization of the model using multi-omics analyses. In a series of experiments, hiPSC-derived cardiomyocytes were stimulated with Endothelin-1 for 8, 24, 48 and 72 hours and their transcriptome and secreted proteome were analyzed thoroughly. The transcriptomic data show many enriched canonical pathways related to cardiac hypertrophy already at the earliest time point, e.g., cardiac hypertrophy signaling, actin cytoskeleton signaling and PI3K/AKT signaling. Cluster analysis of the differentially expressed genes showed that there are numerous clusters of genes that are dysregulated over the time period of 8 to 72h. An integrated transcriptome-secretome analysis enabled the identification of multimodal biomarkers of high relevance for monitoring early cardiac hypertrophy progression. Taken together, the results from this study demonstrate that our in vitro model displays a hypertrophic response on transcriptomic- and secreted proteomic level. The results also provide novel insight into the underlying mechanisms of cardiac hypertrophy and novel putative early cardiac hypertrophy biomarkers have been identified that will be further validated to assess their clinical relevance.