Project description:Epithelium-only cultured stem cells isolated from human pluripotent stem cell derived intestinal organoids grown in matrigel and alginate
Project description:We developed simple, robust, efficient, and serum-free/feeder-free induction protocol for neural crest cells from human pluripotent stem cells. To characterize the hNCCs and hNCC-derived MSCs, we performed gene expression profiling experiments. Comparison of gene expressions among hiPSCs, hESCs, hNCCs and hNC-MSCs
Project description:Expression data from neural crest cells and neural crest cell-derived MSCs from human pluripotent stem cells of FOP patients and controls
Project description:We developed simple, robust, efficient, and serum-free/feeder-free induction protocol for neural crest cells from human pluripotent stem cells. To characterize the hNCCs and hNCC-derived MSCs, we performed gene expression profiling experiments.
Project description:We describe a so far uncharacterized, embryonic and self-renewing Neural Plate Border Stem Cell (NBSC) population with the capacity to differentiate into central nervous and neural crest lineages. NBSCs can be obtained by neural transcription factor-mediated reprogramming (BRN2, SOX2, KLF4, and ZIC3) of human adult dermal fibroblasts and peripheral blood cells (induced Neural Plate Border Stem Cells, iNBSCs) or by directed differentiation from human induced pluripotent stem cells. Moreover, human (i)NBSCs share molecular and functional features with an endogenous NBSC population isolated from neural folds of E8.5 mouse embryos. Upon differentiation, iNBSCs give rise to either (1) radial glia-type stem cells, dopaminergic and serotonergic neurons, motoneurons, astrocytes, and oligodendrocytes or (2) cells from the neural crest lineage. Here we provide array-based expression data of primary mouse Neural Plate Border Stem Cells (pNBSCs) derived from E8.5 mouse embryos and radial glia-type stem cells and neural crest progenitors derived thereof. The data provided reveal that pNBSCs can be directed into defined neural cell types of the CNS- and neural crest lineage.