Project description:We explored the relationship between Myc activity and PI3K signaling in ESCs. Our data demonstrate that Myc and PI3K signaling function cooperatively for supporting pluripotent property of ESCs. Moreover, our data demonstrate that exposure of ESCs to 2i condition render both Myc and PI3K dispensable for preserving ESC status. Effect of PI3K inhibitor, LY4294002 on EBRTcH3 ESCs or their derivatives overexpressing c-Myc (wild-type or T58A mutant) was examined. Effect of LY4294002 on EBRTcH3 ESCs under 2i conditions was also examined. Furthermore, effect of Max expression ablation was compared between ESCs and those overexpressing p110 alpha.
Project description:We explored the relationship between Myc activity and PI3K signaling in ESCs. Our data demonstrate that Myc and PI3K signaling function cooperatively for supporting pluripotent property of ESCs. Moreover, our data demonstrate that exposure of ESCs to 2i condition render both Myc and PI3K dispensable for preserving ESC status.
Project description:Although 3-Phosphoinositide-dependent protein kinase-1 (PDK1) has been predominately linked to PI3K-AKT pathway, it may also evoke additional signaling outputs to promote tumorigenesis. Here we report that PDK1 directly induces phosphorylation of Polo-like kinase 1 (PLK1), which in turn induces Myc phosphorylation and protein accumulation. We show that PDK1-PLK1-Myc signaling is critical for cancer cell growth and survival and small molecule inhibition of PDK1/PLK1 provides an effective approach for therapeutic targeting Myc-dependency. Intriguingly, PDK1-PLK1-Myc signaling induces an embryonic stem cell-like gene signature associated with aggressive tumor behaviors and is a robust signaling axis driving cancer stem cell (CSC) self renewal. Finally, we show that PLK1 inhibitor synergizes with mTOR inhibitor to induce synergistic anti-tumor effect in colorectal cancer by antagonizing a compensatory Myc induction. These findings identify a novel pathway in human cancer and CSC activation and provide a therapeutic strategy for targeting Myc-associated tumorigenesis and therapeutic resistance. Gene expression profiling of Human Embryonic Kidney Cells (HEK-TERV) under different conditions: PMN, PDK1, MYC and E545K
Project description:Both FGF and WNT pathways play important roles in embryonic development, stem cell self-renewal and are frequently deregulated in breast cancer. To study the cooperation between FGF and WNT signaling, we have generated a mouse model, MMTV-WNT1/MMTV-iFGFR1 (WNT/iR1), in which we could chemically overactivate iFGFR1 in a ligand-independent manner.
Project description:One aspect of intra-tumoral heterogeneity in glioblastoma involves subpopulations of cells capable of self-renewal and indefinite propagation. Conceptually, this capacity is frequently treated as a static property. Here we provide data suggesting that tumorigenicity in glioblastomais a dynamic property that can be acquired or lost. Integrated expression analyses suggest that tumorigenicity is determined by the level of MYC expression relative to a threshold. Transitions between tumorigenic and non-tumorigenic cell states are associated with changes in histone modifications at the MYC locus, suggesting tumorigenicity is epigenetically regulated.
Project description:An immortalized multipotent otic progenitor (iMOP) cell was generated by transient expression of c-Myc in Sox2-expressing otic progenitor cells. The procedure activated endogenous c-Myc expression in the cells and amplified existing Sox2-dependent transcripts to promote self-renewal. Downregulation of c-Myc expression following growth factor withdrawal resulted in a molecular switch from self-renewal to otic differentiation. Progenitor cells from embryonic inner ear that form otospheres were infected with a c-Myc retrovirus to promote self-renewal
Project description:One aspect of intra-tumoral heterogeneity in glioblastoma involves subpopulations of cells capable of self-renewal and indefinite propagation. Conceptually, this capacity is frequently treated as a static property. Here we provide data suggesting that tumorigenicity in glioblastomais a dynamic property that can be acquired or lost. Integrated expression analyses suggest that tumorigenicity is determined by the level of MYC expression relative to a threshold. Transitions between tumorigenic and non-tumorigenic cell states are associated with changes in histone modifications at the MYC locus, suggesting tumorigenicity is epigenetically regulated. To verify genomic stability at the nucleotide level, we tested whether subclones derived from single cells shared common Single-Nucleotide Polymorphisms (SNPs). Ten single cell-derived subclones of U87MG underwent SNP profiling by Affymetrix Human Mapping 250K Nsp arrays.
Project description:Although 3-Phosphoinositide-dependent protein kinase-1 (PDK1) has been predominately linked to PI3K-AKT pathway, it may also evoke additional signaling outputs to promote tumorigenesis. Here we report that PDK1 directly induces phosphorylation of Polo-like kinase 1 (PLK1), which in turn induces Myc phosphorylation and protein accumulation. We show that PDK1-PLK1-Myc signaling is critical for cancer cell growth and survival and small molecule inhibition of PDK1/PLK1 provides an effective approach for therapeutic targeting Myc-dependency. Intriguingly, PDK1-PLK1-Myc signaling induces an embryonic stem cell-like gene signature associated with aggressive tumor behaviors and is a robust signaling axis driving cancer stem cell (CSC) self renewal. Finally, we show that PLK1 inhibitor synergizes with mTOR inhibitor to induce synergistic anti-tumor effect in colorectal cancer by antagonizing a compensatory Myc induction. These findings identify a novel pathway in human cancer and CSC activation and provide a therapeutic strategy for targeting Myc-associated tumorigenesis and therapeutic resistance.
Project description:Chavez2009 - a core regulatory network of OCT4 in human embryonic stem cells
A core OCT4-regulated network has been identified as a test case, to analyase stem cell characteristics and cellular differentiation.
This model is described in the article:
In silico identification of a core regulatory network of OCT4 in human embryonic stem cells using an integrated approach.
Chavez L, Bais AS, Vingron M, Lehrach H, Adjaye J, Herwig R
BMC Genomics, 2009, 10:314
Abstract:
BACKGROUND: The transcription factor OCT4 is highly expressed in pluripotent embryonic stem cells which are derived from the inner cell mass of mammalian blastocysts. Pluripotency and self renewal are controlled by a transcription regulatory network governed by the transcription factors OCT4, SOX2 and NANOG. Recent studies on reprogramming somatic cells to induced pluripotent stem cells highlight OCT4 as a key regulator of pluripotency.
RESULTS: We have carried out an integrated analysis of high-throughput data (ChIP-on-chip and RNAi experiments along with promoter sequence analysis of putative target genes) and identified a core OCT4 regulatory network in human embryonic stem cells consisting of 33 target genes. Enrichment analysis with these target genes revealed that this integrative analysis increases the functional information content by factors of 1.3 - 4.7 compared to the individual studies. In order to identify potential regulatory co-factors of OCT4, we performed a de novo motif analysis. In addition to known validated OCT4 motifs we obtained binding sites similar to motifs recognized by further regulators of pluripotency and development; e.g. the heterodimer of the transcription factors C-MYC and MAX, a prerequisite for C-MYC transcriptional activity that leads to cell growth and proliferation.
CONCLUSION: Our analysis shows how heterogeneous functional information can be integrated in order to reconstruct gene regulatory networks. As a test case we identified a core OCT4-regulated network that is important for the analysis of stem cell characteristics and cellular differentiation. Functional information is largely enriched using different experimental results. The de novo motif discovery identified well-known regulators closely connected to the OCT4 network as well as potential new regulators of pluripotency and differentiation. These results provide the basis for further targeted functional studies.
This model is hosted on BioModels Database
and identified
by: MODEL1305010000
.
To cite BioModels Database, please use: BioModels Database: An enhanced, curated and annotated resource
for published quantitative kinetic models
.
To the extent possible under law, all copyright and related or
neighbouring rights to this encoded model have been dedicated to the public
domain worldwide. Please refer to CC0 Public Domain
Dedication
for more information.
Project description:This experiment is part of the FunGenES project (FunGenES - Functional Genomics in Embryonic Stem Cells partially funded by the 6th Framework Programme of the European Union, http://www.fungenes.org).The experiment was conducted at the Unyversity of Bath, Bath, UK. Aim of the experiment is the identification of genes regulated by PI3K-dependent signaling in undifferentiated ES cells. Materials and methods: To identify target genes of PI3-K signalling, the PI3-K signalling inhibitor LY294002 was used at a concentration which was shown to perturb self-renewal in the presence of LIF and which knocks down PI3K signals. CGR8 cells cultivated in serum-free conditions in the presence of LIF were starved for 24h in media lacking LIF and then pre-inubated for 30 minutes with 5 mM LY294002 in DMSO or with DMSO alone. Cells were then stimulated with LIF for 2h, prior to preparation of RNA samples. Relationships between samples: Samples were either maintained in LIF or LIF plus LY294002 (PI3K inhibitor) for the required treatment times. Treatments: Treatment times with PI3K inhibitor LY294002 at 5 uM 2h (n=5), 3h (n=5).