Project description:Parkinson's disease (PD) is an adult-onset movement disorder of largely unknown etiology. We have previously shown that loss-of-function mutations of the mitochondrial protein kinase PINK1 (PTEN induced putative kinase 1) cause the recessive PARK6 variant of PD. Now we generated a PINK1 deficient mouse and observed several novel phenotypes: A progressive reduction of weight and of locomotor activity selectively for spontaneous movements occurred at old age. As in PD, abnormal dopamine levels in the aged nigrostriatal projection accompanied the reduced movements. Possibly in line with the PARK6 syndrome but in contrast to sporadic PD, a reduced lifespan, dysfunction of brainstem and sympathetic nerves, visible aggregates of M-NM-1-synuclein within Lewy bodies or nigrostriatal neurodegeneration were not present in aged PINK1-deficient mice. However, we demonstrate PINK1 mutant mice to exhibit a progressive reduction in mitochondrial preprotein import correlating with defects of core mitochondrial functions like ATP-generation and respiration. In contrast to the strong effect of PINK1 on mitochondrial dynamics in Drosophila melanogaster and in spite of reduced expression of fission factor Mtp18, we show reduced fission and increased aggregation of mitochondria only under stress in PINK1-deficient mouse neurons. Thus, aging Pink1M-bM-^HM-^R/M-bM-^HM-^R mice show increasing mitochondrial dysfunction resulting in impaired neural activity similar to PD, in absence of overt neuronal death. Transcriptome microarray data of Pink1-/- mouse brains in absence of a stressor, even at old age, show remarkably sparse dysregulations. See Gispert-S et al 2009 PLOS ONE. Factorial design comparing Pink1 knock-out mice with wild type littermates in three different tissues (striatum, midbrain, cerebellum at four different timepoints (6, 12, 14 weeks, and 18 month)
Project description:Parkinson's disease (PD) is an adult-onset movement disorder of largely unknown etiology. We have previously shown that loss-of-function mutations of the mitochondrial protein kinase PINK1 (PTEN induced putative kinase 1) cause the recessive PARK6 variant of PD. Now we generated a PINK1 deficient mouse and observed several novel phenotypes: A progressive reduction of weight and of locomotor activity selectively for spontaneous movements occurred at old age. As in PD, abnormal dopamine levels in the aged nigrostriatal projection accompanied the reduced movements. Possibly in line with the PARK6 syndrome but in contrast to sporadic PD, a reduced lifespan, dysfunction of brainstem and sympathetic nerves, visible aggregates of α-synuclein within Lewy bodies or nigrostriatal neurodegeneration were not present in aged PINK1-deficient mice. However, we demonstrate PINK1 mutant mice to exhibit a progressive reduction in mitochondrial preprotein import correlating with defects of core mitochondrial functions like ATP-generation and respiration. In contrast to the strong effect of PINK1 on mitochondrial dynamics in Drosophila melanogaster and in spite of reduced expression of fission factor Mtp18, we show reduced fission and increased aggregation of mitochondria only under stress in PINK1-deficient mouse neurons. Thus, aging Pink1−/− mice show increasing mitochondrial dysfunction resulting in impaired neural activity similar to PD, in absence of overt neuronal death. Transcriptome microarray data of Pink1-/- mouse brains in absence of a stressor, even at old age, show remarkably sparse dysregulations. See Gispert-S et al 2009 PLOS ONE.
Project description:Early-onset pathology and reliable disease biomarkers for diagnostics are poorly understood for progressive degenerative disorders such as Parkinson disease (PD). PD is the second most common age-related degenerative disorder. The Pink1-/- rat is a mitochondrial dysfunction model of prodromal PD. In this study, we used RNA sequencing to examine gene expression within whole blood samples of young and old Pink1-/- rats as compared to age-matched wildtype controls.
Project description:Mitochondrial dysfunction is a common feature in neurodegeneration and aging. We identify mitochondrial dysfunction in xeroderma pigmentosum group A (XPA), a nucleotide excision DNA repair disorder with severe neurodegeneration, in silico and in vivo. XPA deficient cells show defective mitophagy with excessive cleavage of PINK1 and increased mitochondrial membrane potential. The mitochondrial abnormalities appear to be caused by decreased activation of the NAD+-SIRT1-PGC-1α axis triggered by hyperactivation of the DNA damage sensor PARP1. This phenotype is rescued by PARP1 inhibition or by supplementation with NAD+ precursors that also rescue the lifespan defect in xpa-1 nematodes. Importantly, this pathogenesis appears common to ataxia-telangiectasia and Cockayne syndrome, two other DNA repair disorders with neurodegeneration, but absent in XPC, a DNA repair disorder without neurodegeneration. Our findings reveal a novel nuclear-mitochondrial cross-talk that is critical for the maintenance of mitochondrial health.
Project description:Mitochondrial dysfunction is a common feature in neurodegeneration and aging. We identify mitochondrial dysfunction in xeroderma pigmentosum group A (XPA), a nucleotide excision DNA repair disorder with severe neurodegeneration, in silico and in vivo. XPA deficient cells show defective mitophagy with excessive cleavage of PINK1 and increased mitochondrial membrane potential. The mitochondrial abnormalities appear to be caused by decreased activation of the NAD+-SIRT1-PGC-1α axis triggered by hyperactivation of the DNA damage sensor PARP1. This phenotype is rescued by PARP1 inhibition or by supplementation with NAD+ precursors that also rescue the lifespan defect in xpa-1 nematodes. Importantly, this pathogenesis appears common to ataxia-telangiectasia and Cockayne syndrome, two other DNA repair disorders with neurodegeneration, but absent in XPC, a DNA repair disorder without neurodegeneration. Our findings reveal a novel nuclear-mitochondrial cross-talk that is critical for the maintenance of mitochondrial health.
Project description:Parkinsonâs disease (PD), the second most frequent neurodegenerative disorder at old age, can be caused by elevated expression, or the A53T mutation, of the presynaptic protein alpha-synuclein (SNCA). PD is characterized pathologically by the preferential vulnerability of the dopaminergic nigrostriatal projection neurons. Here, we used two mouse lines overexpressing human A53T-SNCA around ages 6 and 18 months and studied striatal dysfunction in the absence of neurodegeneration to understand early disease mechanisms. High pressure liquid chromatography analysis of striatal neurotransmitter content demonstrated that dopamine (DA) levels correlated directly with the level of expression of SNCA, an observation also observed in SNCA deficient mice. In the striatum of aged A53TSNCA overexpressing mice, where DA levels were elevated, a paradoxical upregulation of dopamine receptors DRD1A and DRD2 was detected by immunoblots and autoradiography, findings compatible with the notion of abnormal vesicle release. Extensive transcriptome studies via microarrays and quantitative real-time RT-PCR validation of altered Homer1, Cb1, Atf2 and Pde7b transcript levels indicated a progressive reduction in the postsynaptic DA response. As functional consequences, long term depression was absent in corticostriatal slices from aged transgenic mice and an insidious decrease of spontaneous locomotor activity of these animals was found in open field tests. Taken together, the dysfunctional neurotransmission and decreased synaptic plasticity seen in the A53T-SNCA overexpressing mice reflects early functional changes within the basal ganglia resulting from synucleinopathy prior to frank neurodegeneration. Thus, preclinical stages of PD may be modeled in this mouse. Parkinsonâs disease (PD), the second most frequent neurodegenerative disorder at old age, can be caused by elevated expression, or the A53T mutation, of the presynaptic protein alpha-synuclein (SNCA). PD is characterized pathologically by the preferential vulnerability of the dopaminergic nigrostriatal projection neurons. Here, we used two mouse lines overexpressing human A53T-SNCA around ages 6 and 18 months and studied striatal dysfunction in the absence of neurodegeneration to understand early disease mechanisms. High pressure liquid chromatography analysis of striatal neurotransmitter content demonstrated that dopamine (DA) levels correlated directly with the level of expression of SNCA, an observation also observed in SNCA deficient mice. In the striatum of aged A53TSNCA overexpressing mice, where DA levels were elevated, a paradoxical upregulation of dopamine receptors DRD1A and DRD2 was detected by immunoblots and autoradiography, findings compatible with the notion of abnormal vesicle release. Extensive transcriptome studies via microarrays and quantitative real-time RT-PCR validation of altered Homer1, Cb1, Atf2 and Pde7b transcript levels indicated a progressive reduction in the postsynaptic DA response. As functional consequences, long term depression was absent in corticostriatal slices from aged transgenic mice and an insidious decrease of spontaneous locomotor activity of these animals was found in open field tests. Taken together, the dysfunctional neurotransmission and decreased synaptic plasticity seen in the A53T-SNCA overexpressing mice reflects early functional changes within the basal ganglia resulting from synucleinopathy prior to frank neurodegeneration. Thus, preclinical stages of PD may be modeled in this mouse. Tissue was dissected from the brain of 6 months old (2 WT / 2 TgA / 2 TgB striata, 2 WT / 2 TgA / 2 TgB brainstems/midbrains, 2 WT / 2 TgA / 2 TgB cerebella) and of 18+ months old mice (4 WT / 2 TgA / 2 TgB striata, 6 WT / 4 TgA / 3 TgB brainstems/midbrains, 6 WT / 5 TgA / 4 TgB cerebella). Tissues from individual, particularly old mice up to 28 months age were included here to strengthen the definition of progression markers reflecting old age.
Project description:The mitochondrial intramembrane rhomboid protease Parl plays essential roles in cell death but its physiological contribution remains unclear. In the present study we show that Parl ablation causes a dramatic necrotic neurodegeneration consistent with Leigh syndrome, a mitochondrial disease characterized by disrupted energy metabolism. Brain- but not liver or muscle- specific Parl deficient animals mimick Parl knock out animals. Deficiencies of the major substrates, Pink1, Pgam5, and of the complex III assembly factor Ttc19 are insufficient to modify or mimic the phenotype, suggesting that the mechanism involve a combination of Parl-/- induced effects. To investigate which mitochondrial protein changes could underlie the Parl-/- neurodegeneration we performed a quantitative mass spectrometry-based proteome analysis of brain mitochondria purified from three WT and three Parl-/- mice, leading to the quantification of 781 proteins annotated as mitochondrial resident in Swissprot. Statistical analysis revealed the accumulation or disappearance of Parl substrates, and following extensive validation, our data indicate that Pink1, Pgam5, Ttc19, Stard7, Diablo, and Clpb are genuine Parl substrates, and that Pink1, Pgam5, and Ttc19 are the most severely misprocessed substrates in brain. Together, alterations in the brain mitochondrial proteome of Parl-/- mice indicate defects in the ubiquinone pathway and complex III, which is confirmed by functional assays on neuronal mitochondria. Deficient processing of substrates by Parl leads to progressive loss of cristae structure, destabilization of electron transport, coenzyme Q deficiency, and mitochondrial calcium metabolism leading to Leigh syndrome.
Project description:Parkinson’s disease (PD) as a progressive neurodegenerative disorder arises from multiple genetic and environmental factors. However, underlying pathological mechanisms remain poorly understood. Using multiplexed single-cell transcriptomics, we analyze human neural precursor cells (hNPCs) from sporadic PD (sPD) patients. Alterations in gene expression appear in pathways related to primary cilia (PC). Accordingly, in these hiPSC-derived hNPCs and neurons, we observe a shortening of PC. Additionally, we detect a shortening of PC in PINK1-deficient human cellular and mouse models of familial PD. Furthermore, in sPD models, the shortening of PC is accompanied by an increased SHH signal transduction. Inhibition of this pathway rescues the alterations in PC morphology and mitochondrial dysfunction. Thus, increased SHH activity due to ciliary dysfunction is needed for the development of pathoetiological phenotypes observed in sPD, like mitochondrial dysfunction. In sum, altered PC function is part of early PD pathoetiology and inhibiting the overactive SHH signaling is a potential neuroprotective therapy.
Project description:Mitochondrial dysfunction is a common feature in neurodegeneration and aging. We identify mitochondrial dysfunction in xeroderma pigmentosum group A (XPA), a nucleotide excision DNA repair disorder with severe neurodegeneration, in silico and in vivo. XPA deficient cells show defective mitophagy with excessive cleavage of PINK1 and increased mitochondrial membrane potential. The mitochondrial abnormalities appear to be caused by decreased activation of the NAD+-SIRT1-PGC-1? axis triggered by hyperactivation of the DNA damage sensor PARP1. This phenotype is rescued by PARP1 inhibition or by supplementation with NAD+ precursors that also rescue the lifespan defect in xpa-1 nematodes. Importantly, this pathogenesis appears common to ataxia-telangiectasia and Cockayne syndrome, two other DNA repair disorders with neurodegeneration, but absent in XPC, a DNA repair disorder without neurodegeneration. Our findings reveal a novel nuclear-mitochondrial cross-talk that is critical for the maintenance of mitochondrial health. Mice carrying WT, or CX (Csa-/-/Xpa-/-) alleles in a C57BL/6 background were maintained under standard laboratory conditions and allowed free access to water and control casein pelleted diet (Research Diets D12450B). At 3 months of age, 3 replicates of each of the CX and WT mice were given subcutaneous interscapular injections of 500 mg of Nicotinamide riboside/kg body weight/day or the equivalent volume of saline for 14 consecutive days at 4:00 pm. On day 15, the mice were sacrificed and half of the cerebellum was harvested for purification of mitochondria, with the left half snap-frozen, homogenized, and aliquoted for RNA isolation. Total RNA extraction was done using a TRIzol Plus RNA purification kit as per manufacturer’s protocol. Quality and quantity of the total RNA was tested using the Agilent 2100 Bio-Analyzer and RNA 6000 nano kits. The RNA was labeled using the standard Illumina protocol and hybed overnight to Mouse Ref-8 Illumina arrays. The arrays were scanned using the Beadstation 500 X from Illumina.
Project description:Parkinson’s disease (PD), the second most frequent neurodegenerative disorder at old age, can be caused by elevated expression, or the A53T mutation, of the presynaptic protein alpha-synuclein (SNCA). PD is characterized pathologically by the preferential vulnerability of the dopaminergic nigrostriatal projection neurons. Here, we used two mouse lines overexpressing human A53T-SNCA around ages 6 and 18 months and studied striatal dysfunction in the absence of neurodegeneration to understand early disease mechanisms. High pressure liquid chromatography analysis of striatal neurotransmitter content demonstrated that dopamine (DA) levels correlated directly with the level of expression of SNCA, an observation also observed in SNCA deficient mice. In the striatum of aged A53TSNCA overexpressing mice, where DA levels were elevated, a paradoxical upregulation of dopamine receptors DRD1A and DRD2 was detected by immunoblots and autoradiography, findings compatible with the notion of abnormal vesicle release. Extensive transcriptome studies via microarrays and quantitative real-time RT-PCR validation of altered Homer1, Cb1, Atf2 and Pde7b transcript levels indicated a progressive reduction in the postsynaptic DA response. As functional consequences, long term depression was absent in corticostriatal slices from aged transgenic mice and an insidious decrease of spontaneous locomotor activity of these animals was found in open field tests. Taken together, the dysfunctional neurotransmission and decreased synaptic plasticity seen in the A53T-SNCA overexpressing mice reflects early functional changes within the basal ganglia resulting from synucleinopathy prior to frank neurodegeneration. Thus, preclinical stages of PD may be modeled in this mouse. Parkinson’s disease (PD), the second most frequent neurodegenerative disorder at old age, can be caused by elevated expression, or the A53T mutation, of the presynaptic protein alpha-synuclein (SNCA). PD is characterized pathologically by the preferential vulnerability of the dopaminergic nigrostriatal projection neurons. Here, we used two mouse lines overexpressing human A53T-SNCA around ages 6 and 18 months and studied striatal dysfunction in the absence of neurodegeneration to understand early disease mechanisms. High pressure liquid chromatography analysis of striatal neurotransmitter content demonstrated that dopamine (DA) levels correlated directly with the level of expression of SNCA, an observation also observed in SNCA deficient mice. In the striatum of aged A53TSNCA overexpressing mice, where DA levels were elevated, a paradoxical upregulation of dopamine receptors DRD1A and DRD2 was detected by immunoblots and autoradiography, findings compatible with the notion of abnormal vesicle release. Extensive transcriptome studies via microarrays and quantitative real-time RT-PCR validation of altered Homer1, Cb1, Atf2 and Pde7b transcript levels indicated a progressive reduction in the postsynaptic DA response. As functional consequences, long term depression was absent in corticostriatal slices from aged transgenic mice and an insidious decrease of spontaneous locomotor activity of these animals was found in open field tests. Taken together, the dysfunctional neurotransmission and decreased synaptic plasticity seen in the A53T-SNCA overexpressing mice reflects early functional changes within the basal ganglia resulting from synucleinopathy prior to frank neurodegeneration. Thus, preclinical stages of PD may be modeled in this mouse.