Primary cilia and SHH signaling impairments in human and mouse models of Parkinson’s disease
Ontology highlight
ABSTRACT: Parkinson’s disease (PD) as a progressive neurodegenerative disorder arises from multiple genetic and environmental factors. However, underlying pathological mechanisms remain poorly understood. Using multiplexed single-cell transcriptomics, we analyze human neural precursor cells (hNPCs) from sporadic PD (sPD) patients. Alterations in gene expression appear in pathways related to primary cilia (PC). Accordingly, in these hiPSC-derived hNPCs and neurons, we observe a shortening of PC. Additionally, we detect a shortening of PC in PINK1-deficient human cellular and mouse models of familial PD. Furthermore, in sPD models, the shortening of PC is accompanied by an increased SHH signal transduction. Inhibition of this pathway rescues the alterations in PC morphology and mitochondrial dysfunction. Thus, increased SHH activity due to ciliary dysfunction is needed for the development of pathoetiological phenotypes observed in sPD, like mitochondrial dysfunction. In sum, altered PC function is part of early PD pathoetiology and inhibiting the overactive SHH signaling is a potential neuroprotective therapy.
ORGANISM(S): Homo sapiens
PROVIDER: GSE176160 | GEO | 2022/06/23
REPOSITORIES: GEO
ACCESS DATA