Project description:We present LASSIM, which is a toolbox built to build and infer parameters within mechanistic models on a genomic scale. This is made possible due to a property shared across biological systems, namely the existence of a subset of master regulators, here denoted the core system. The introduction of a core system of genes simplifies the inference into small solvable sub-problems, and implies that all main regulatory actions on peripheral genes come from a small set of regulator genes. This separation allows substantial parts of computations to be solved in parallel, i.e. permitting the use of a computer cluster, which substantially reduces the time for the computation to finish.
Project description:We present LASSIM, which is a toolbox built to build and infer parameters within mechanistic models on a genomic scale. This is made possible due to a property shared across biological systems, namely the existence of a subset of master regulators, here denoted the core system. The introduction of a core system of genes simplifies the inference into small solvable sub-problems, and implies that all main regulatory actions on peripheral genes come from a small set of regulator genes. This separation allows substantial parts of computations to be solved in parallel, i.e. permitting the use of a computer cluster, which substantially reduces the time for the computation to finish.
Project description:We present LASSIM, which is a toolbox built to build and infer parameters within mechanistic models on a genomic scale. This is made possible due to a property shared across biological systems, namely the existence of a subset of master regulators, here denoted the core system. The introduction of a core system of genes simplifies the inference into small solvable sub-problems, and implies that all main regulatory actions on peripheral genes come from a small set of regulator genes. This separation allows substantial parts of computations to be solved in parallel, i.e. permitting the use of a computer cluster, which substantially reduces the time for the computation to finish.
Project description:Recent technological advancements have made time-resolved, quantitative, multi-omics data available for many model systems, which could be integrated for systems pharmacokinetic use. Here, we present large-scale simulation modeling (LASSIM), which is a novel mathematical tool for performing large-scale inference using mechanistically defined ordinary differential equations (ODE) for gene regulatory networks (GRNs). LASSIM integrates structural knowledge about regulatory interactions and non-linear equations with multiple steady state and dynamic response expression datasets. The rationale behind LASSIM is that biological GRNs can be simplified using a limited subset of core genes that are assumed to regulate all other gene transcription events in the network. The LASSIM method is implemented as a general-purpose toolbox using the PyGMO Python package to make the most of multicore computers and high performance clusters, and is available at https://gitlab.com/Gustafsson-lab/lassim. As a method, LASSIM works in two steps, where it first infers a non-linear ODE system of the pre-specified core gene expression. Second, LASSIM in parallel optimizes the parameters that model the regulation of peripheral genes by core system genes. We showed the usefulness of this method by applying LASSIM to infer a large-scale non-linear model of naïve Th2 cell differentiation, made possible by integrating Th2 specific bindings, time-series together with six public and six novel siRNA-mediated knock-down experiments. ChIP-seq showed significant overlap for all tested transcription factors. Next, we performed novel time-series measurements of total T-cells during differentiation towards Th2 and verified that our LASSIM model could monitor those data significantly better than comparable models that used the same Th2 bindings. In summary, the LASSIM toolbox opens the door to a new type of model-based data analysis that combines the strengths of reliable mechanistic models with truly systems-level data. We demonstrate the power of this approach by inferring a mechanistically motivated, genome-wide model of the Th2 transcription regulatory system, which plays an important role in several immune related diseases.
Project description:Recent and ongoing revolutions in measurement technologies imply completely new possibilities for genome research: today, time-resolved, quantitative, and systems-level data are available. Nevertheless, without a corresponding revolution in methods for data analysis, these new data tend to drown researchers and doctors, rather than provide clear and useful insights. Such new methods are developed within the field of systems biology. Systems biology has two main approaches: mechanistically detailed and well-determined simulation models for small subsystems, and more approximative statistical models for the entire genome. However, there are few, if any, methods that combine the strengths of these two approaches. Herein, we present LASSIM, a new simulation-based approach, which can be applied to systems of the size of the entire genome. The superior performance of LASSIM is demonstrated in three examples: i) an example with simulated data shows that unlike traditional large-scale methods, LASSIM correctly identifies the true behavior between measured data-points, ii) LASSIM outperforms the winner of a previous DREAM challenge, the most competitive benchmarking approach available, iii) based on new data from TH2 differentiation, LASSIM identifies a first mechanistic model for the entire genome. The key predictions of this model are typically enriched for DNA bindings, which suggests that most predicted interactions are direct. Moreover, in silico knockdowns were experimentally validated. In summary, LASSIM opens the door to a new type of model-based data analysis: to models that combine the strengths of reliable mechanistic models with truly systems-level data.
Project description:We report the development of a new computational method to assess differences in cell-cell interactions between conditions through utilizing single-cell RNA sequencing data. The pipeline, known as Cell Interaction Network Inference from Single-cell Expression data (CINS), combines Bayesian network analysis with regression-based modeling to identify differential cell type interactions and the proteins that underlie these interactions.