Project description:For the purpose of the Gene Regulatory Network validation we have performed chromatin-immunoprecipitation sequencing (ChIP-Seq) experiment for three transcription factors; namely GATA3, MAF and MYB. ChIP-Seq of GATA3, MAF and MYB in human naïve CD4+ T-cells differentiated toward Th1 and Th2 until day 6. Matched INPUT samples were also sequenced for each condition.
Project description:For the purpose of the Gene Regulatory Network validation we have performed chromatin-immunoprecipitation sequencing (ChIP-Seq) experiment for three transcription factors; namely GATA3, MAF and MYB.
Project description:The transcription factor c-Myb plays a key role in human primary CD34+ hematopoietic progenitor cells (HPCs) lineage choice, by enhancing erythropoiesis at the expense of megakaryopoiesis. We previously demonstrated that c-Myb affects erythroid versus megakaryocyte lineage decision in part by transactivating KLF1 and LMO2 expression. To further unravel the molecular mechanisms through which c-myb affects lineage fate decision, we profiled the miRNA and mRNA changes in myb-silenced CD34+ HPCs. The integrative analysis of miRNA/mRNA expression changes upon c-myb silencing in human CD34+ HPCs highlighted a set of 19 miRNA with 150 anticorrelated putative target mRNAs. Among the miRNAs downregulated in myb-silenced progenitors with the highest number of predicted target mRNAs, we selected hsa-miR-486-3p based on the in vitro effects of its overexpression on HPCs commitment. Indeed, morphological and flow cytometric analyses after liquid culture showed that hsa-miR-486-3p overexpression in HPCs enhanced erythroid and granulocyte differentiation while restraining megakaryocyte and macrophage differentiation. Moreover, collagen-based clonogenic assay demonstrated a strong impairement megakaryocyte commitment upon hsa-miR-486-3p overexpression in CD34+ cells. Moreover, in order to identify the mRNA target through which hsa-miR-486-3p affects lineage fate decision, we profiled the mRNA changes in mimic transfected CD34+ HPC by means of Affymetrix GeneAtlas U219 strip array. Gene expression profiling of hsa-miR-486-3p overexpressing CD34+ cells enabled us to identify a set of 8 genes downregulated and computationally predicted, putative hsa-miR-486-3p targets. Among them, we selected c-maf transcript as upregulated upon myb silencing. Worth of note, c-maf silencing in CD34+ progenitor cells was able to reverse the affects of myb silencing on erythroid versus megakaryocyte lineage choice. Integrative miRNA/mRNA analysis highlighted a set of miRNAs and anticorrelated putative target mRNAs modulated upon myb silencing, therefore potential players in myb-driven HPCs lineage choice. Among them, we demonstrated the hsa-miR-486-3p/c-maf pair as partially contributing to the effects of myb on HPCs commitment. Therefore, our data collectively identified myb-driven hsa-miR-486-3p upregulation and subsequent c-maf downregulation as a new molecular mechanism through which cMyb favours erythropoiesis while restraining megakaryopoiesis. Gene expression profile (GEP) was performed on total RNA derived from three independent experiments at 24h after the last nucleofection.
Project description:The transcription factor cMyb plays a key role in human primary CD34+ hematopoietic progenitor cells (HPCs) lineage choice, by enhancing erythropoiesis at the expense of megakaryopoiesis. We previously demonstrated that cMyb affects erythroid versus megakaryocyte lineage decision in part by transactivating KLF1 and LMO2 expression. To further unravel the molecular mechanisms through which cmyb affects lineage fate decision, we profiled the miRNA and mRNA changes in myb-silenced CD34+ HPCs. mRNA and miRNA expression for each sample were profiled by Affymetrix GeneAtlas U219 strip array and Exiqon Human miRNome PCR Panel, respectively. miRNA/mRNA data were integrated by Ingenuity Pathway Analysis. The integrative analysis of miRNA/mRNA expression changes upon c-myb silencing in human CD34+ HPCs highlighted a set of 19 miRNA with 150 anticorrelated putative target mRNAs. Among the miRNAs downregulated in myb-silenced progenitors with the highest number of predicted target mRNAs, we selected hsa-miR-486-3p based on the in vitro effects of its overexpression on HPCs commitment. Indeed, morphological and flow cytometric analyses after liquid culture showed that hsa-miR-486-3p overexpression in HPCs enhanced erythroid and granulocyte differentiation while restraining megakaryocyte and macrophage differentiation. Moreover, collagen-based clonogenic assay demonstrated a strong impairement megakaryocyte commitment upon hsa-miR-486-3p overexpression in CD34+ cells. Gene expression profiling of hsa-miR-486-3p overexpressing CD34+ cells enabled us to identify a set of 8 genes downregulated and computationally predicted, putative hsa-miR-486-3p targets. Among them, we selected c-maf transcript as upregulated upon myb silencing. Worth of note, c-maf silencing in CD34+ progenitor cells was able to reverse the affects of myb silencing on erythroid versus megakaryocyte lineage choice. Integrative miRNA/mRNA analysis highlighted a set of miRNAs and anticorrelated putative target mRNAs modulated upon myb silencing, therefore potential players in myb-driven HPCs lineage choice. Among them, we demonstrated the hsa-miR-486-3p/c-maf pair as partially contributing to the effects of myb on HPCs commitment. Therefore, our data collectively identified myb-driven hsa-miR-486-3p upregulation and subsequent c-maf downregulation as a new molecular mechanism through which cMyb favours erythropoiesis while restraining megakaryopoiesis. RNA from CD34+ HPCs transfected with c-myb-targeting/non targeting control (NegCTR) synthetic siRNAs was collected 24 hours post-Nucleofection for a set of 5 independent experiments.
Project description:The transcription factor cMyb plays a key role in human primary CD34+ hematopoietic progenitor cells (HPCs) lineage choice, by enhancing erythropoiesis at the expense of megakaryopoiesis. We previously demonstrated that cMyb affects erythroid versus megakaryocyte lineage decision in part by transactivating KLF1 and LMO2 expression. To further unravel the molecular mechanisms through which cmyb affects lineage fate decision, we profiled the miRNA and mRNA changes in myb-silenced CD34+ HPCs. mRNA and miRNA expression for each sample were profiled by Affymetrix GeneAtlas U219 strip array and Exiqon Human miRNome PCR Panel, respectively. miRNA/mRNA data were integrated by Ingenuity Pathway Analysis. The integrative analysis of miRNA/mRNA expression changes upon c-myb silencing in human CD34+ HPCs highlighted a set of 19 miRNA with 150 anticorrelated putative target mRNAs. Among the miRNAs downregulated in myb-silenced progenitors with the highest number of predicted target mRNAs, we selected hsa-miR-486-3p based on the in vitro effects of its overexpression on HPCs commitment. Indeed, morphological and flow cytometric analyses after liquid culture showed that hsa-miR-486-3p overexpression in HPCs enhanced erythroid and granulocyte differentiation while restraining megakaryocyte and macrophage differentiation. Moreover, collagen-based clonogenic assay demonstrated a strong impairement megakaryocyte commitment upon hsa-miR-486-3p overexpression in CD34+ cells. Gene expression profiling of hsa-miR-486-3p overexpressing CD34+ cells enabled us to identify a set of 8 genes downregulated and computationally predicted, putative hsa-miR-486-3p targets. Among them, we selected c-maf transcript as upregulated upon myb silencing. Worth of note, c-maf silencing in CD34+ progenitor cells was able to reverse the affects of myb silencing on erythroid versus megakaryocyte lineage choice. Integrative miRNA/mRNA analysis highlighted a set of miRNAs and anticorrelated putative target mRNAs modulated upon myb silencing, therefore potential players in myb-driven HPCs lineage choice. Among them, we demonstrated the hsa-miR-486-3p/c-maf pair as partially contributing to the effects of myb on HPCs commitment. Therefore, our data collectively identified myb-driven hsa-miR-486-3p upregulation and subsequent c-maf downregulation as a new molecular mechanism through which cMyb favours erythropoiesis while restraining megakaryopoiesis. RNA from CD34+ HPCs transfected once/twice/3 times with c-myb-targeting/non targeting control siRNAs was collected for a set of 5 independent experiments.
Project description:We report the development of a new computational method to assess differences in cell-cell interactions between conditions through utilizing single-cell RNA sequencing data. The pipeline, known as Cell Interaction Network Inference from Single-cell Expression data (CINS), combines Bayesian network analysis with regression-based modeling to identify differential cell type interactions and the proteins that underlie these interactions.
Project description:We present LASSIM, which is a toolbox built to build and infer parameters within mechanistic models on a genomic scale. This is made possible due to a property shared across biological systems, namely the existence of a subset of master regulators, here denoted the core system. The introduction of a core system of genes simplifies the inference into small solvable sub-problems, and implies that all main regulatory actions on peripheral genes come from a small set of regulator genes. This separation allows substantial parts of computations to be solved in parallel, i.e. permitting the use of a computer cluster, which substantially reduces the time for the computation to finish.