Project description:Human babesiosis, especially caused by the cattle derived Babesia divergens parasite, is on the increase, resulting in renewed attentiveness to this potentially life threatening emerging zoonotic disease. The molecular mechanisms underlying the pathophysiology and intra-erythrocytic development of these parasites are poorly understood. This impedes concerted efforts aimed at the discovery of novel anti-babesiacidal agents. By applying sensitive cell biological and molecular functional genomics tools, we describe the intra-erythrocytic development cycle of B. divergens parasites from immature, mono-nucleated ring forms to bi-nucleated paired piriforms and ultimately multi-nucleated tetrads that characterizes zoonotic Babesia spp. This is further correlated for the first time to nuclear content increases during intra-erythrocytic development progression, providing insight into the part of the life cycle that occurs during human infection. High-content temporal evaluation elucidated the contribution of the different stages to life cycle progression. Moreover, molecular descriptors indicate that B. divergens parasites employ physiological adaptation to in vitro cultivation. Additionally, differential expression is observed as the parasite equilibrates its developmental stages during its life cycle. Together, this information provides the first temporal evaluation of the functional transcriptome of B. divergens parasites; information that could be useful in identifying biological processes essential to parasite survival for future anti-babesiacidal discoveries.
Project description:Babesia parasites transition between a mammalian host, where they cause babesiosis, and the tick vector that transmits them. This transition provides an environmental signal resulting in altered gene expression allowing the completion of the parasite’s life cycle. A comparison of the different life stages that occur within mammalian and tick hosts can provide insight into the adaptation of Babesia to these different environments. In this study, we used RNA-Seq to compare gene expression between Babesia bovis blood stages and tick derived kinetes.
Project description:Human babesiosis, especially caused by the cattle derived Babesia divergens parasite, is on the increase, resulting in renewed attentiveness to this potentially life threatening emerging zoonotic disease. The molecular mechanisms underlying the pathophysiology and intra-erythrocytic development of these parasites are poorly understood. This impedes concerted efforts aimed at the discovery of novel anti-babesiacidal agents. By applying sensitive cell biological and molecular functional genomics tools, we describe the intra-erythrocytic development cycle of B. divergens parasites from immature, mono-nucleated ring forms to bi-nucleated paired piriforms and ultimately multi-nucleated tetrads that characterizes zoonotic Babesia spp. This is further correlated for the first time to nuclear content increases during intra-erythrocytic development progression, providing insight into the part of the life cycle that occurs during human infection. High-content temporal evaluation elucidated the contribution of the different stages to life cycle progression. Moreover, molecular descriptors indicate that B. divergens parasites employ physiological adaptation to in vitro cultivation. Additionally, differential expression is observed as the parasite equilibrates its developmental stages during its life cycle. Together, this information provides the first temporal evaluation of the functional transcriptome of B. divergens parasites; information that could be useful in identifying biological processes essential to parasite survival for future anti-babesiacidal discoveries. Two-condition experiment, Untreated vs.Treated B. divergens parasites, cultured in human erythrocytes. Treatment with a piperidinyl-benzimidizalone analogue. Biological replicates: 3 untreated (control) replicates, 3 treated replicates. The 6-sample dataset represents untreated(control) vs pooled_reference samples at various timepoints.
Project description:Ticks, as obligate blood-feeding arthropod vectors of pathogenic viruses, bacteria, protozoa and helminths, are responsible for prevalent tick-borne diseases (TBDs) worldwide. This arthropod constitutes the second most common that transmit pathogens among humans, after mosquitoes, and the first vector in domestic animals. Vaccines constitute the safest and more effective approach to control tick and TBDs, but this is in constant research to identify new antigens and improve vaccines formulations. The tick antigen Subolesin is a well-known vaccine protective antigen with a highly conserved sequence at both gene and protein levels in the Ixodidae and among arthropods and vertebrates. In this study, RNAseq and proteomic analyses were carried out in wild type and Subolesin knockdown tick ISE6 cells in order to identify and characterize the functional implications of Subolesin in tick cells, demonstrating once again the importance of this antigen in vaccine development against tick and TBDs.
Project description:Lysine methylation on histone tails impacts genome regulation and cell fate determination in many developmental processes. Apicomplexa intracellular parasites cause major diseases and they have developed complex life cycles with fine-tuned differentiation events. Yet, apicomplexa genomes have few transcription factors and little is known about their epigenetic control systems. Tick-borne Theileria apicomplexa species have relatively small, compact genomes and a remarkable ability to transform leukocytes in their bovine hosts. Here we report enriched H3 lysine 18 monomethylation (H3K18me1) on the gene bodies of repressed genes in Theileria macroschizonts. Differentiation to merozoites (merogony) led to decreased H3K18me1 in parasite nuclei. Pharmacological manipulation of H3K18 acetylation or methylation impacted parasite differentiation and expression of stage-specific genes. Finally, we identified a parasite SET-domain methyltransferase (TaSETup1) that can methylate H3K18 and represses gene expression. Thus, H3K18me1 emerges as an important epigenetic mark which controls gene expression and stage differentiation in Theileria parasites.
Project description:Canine babesiosis, a tick-borne disease, is characterized by protozoan parasites invading red blood cells. It is rapidly expanding in many European countries. Examining extracellular vesicles (EVs) and their protein cargo has the potential to offer crucial insights into the response to Babesia canis infection, presenting opportunities for advancements in veterinary diagnostic and therapeutic strategies. In the present study, we have a) isolated small EVs (< 200 nm) from the serum of 15 healthy dogs and 15 dogs naturally infected with B. canis using size-exclusion chromatography (fraction 2 and 3 per each sample), (2) characterized isolated EVs by nanoparticle tracking analysis, transmission electron microscopy and Western blot (3) analysed the protein cargo of isolated EVs by mass spectrometry. We hypothesized that there will be a difference in EV characteristics (size, concentration, EV marker proteins) and profiles of luminal proteins between the two experimental groups. Our aim was to characterize proteins that can offer valuable insights into B. canis infection in dogs, thereby unravelling the complex mechanisms of B. canis infection.
Project description:Ixodes species ticks are competent vectors of tick-borne viruses including tick-borne encephalitis and Powassan encephalitis. Tick saliva has been shown to facilitate and enhance viral infection. This likely occurs by saliva-mediated modulation of host responses into patterns favorable for viral infection and dissemination. Because of the rapid kinetics of tick-borne viral transmission, this modulation must occur as early as tick attachment and initiation of feeding. In this study, the gene expression profile of cutaneous bite-site lesions created by uninfected ticks were analyzed at 1, 3, 6, and 12 hours after Ixodes scapularis nymphal tick attachment to discover host pathways or responses potentially important in tick-borne viral establishment.
Project description:Most reported U.S. zoonotic cases of babesiosis have occurred in the Northeast and been caused by Babesia microti. In Washington State, three cases of babesiosis have been reported previously, which were caused by WA1 (for "Washington 1")-type parasites. We investigated a case of babesiosis in Washington in an 82-year-old man whose spleen had been removed and whose parasitemia level was 41.4%. The complete 18S ribosomal RNA gene of the parasite was amplified from specimens of his whole blood by polymerase chain reaction. Phylogenetic analysis showed the parasite is most closely related, but not identical, to B. divergens (similarity score, 99.5%), a bovine parasite in Europe. By indirect fluorescent-antibody testing, his serum reacted to B. divergens but not to B. microti or WA1 antigens. This case demonstrates that babesiosis can be caused by novel parasites detectable by manual examination of blood smears but not by serologic or molecular testing for B. microti or WA1-type parasites.