Project description:The circadian clock in mammalian cells is cell-autonomously generated during the cellular differentiation process, but the underlying mechanisms are not understood. Here we show that perturbation of transcriptional program by constitutive expression of c-Myc and Dnmt1 ablation disrupts the differentiation-coupled emergence of the clock from mouse embryonic stem cells (ESCs). Using these model ESCs, 484 genes are identified by global gene expression analysis as factors correlated with differentiation-coupled circadian clock development. Among them, we find the misregulation of Kpna2 (Importin-α2) during the differentiation of the c-Myc over-expressed and Dnmt1-/- ESCs, in which sustained cytoplasmic accumulation of PER proteins is observed. Moreover, constitutive expression of Kpna2 during the differentiation culture of ESCs significantly impairs clock development and KPNA2 facilitates cytoplasmic localization of PER1/2. These results suggest that the programmed gene expression network regulates the differentiation-coupled circadian clock development in mammalian cells, at least in part via post-transcriptional regulation of clock proteins.
Project description:The circadian clock in mammalian cells is cell-autonomously generated during the cellular differentiation process, but the underlying mechanisms are not understood. Here we show that perturbation of transcriptional program by constitutive expression of c-Myc and Dnmt1 ablation disrupts the differentiation-coupled emergence of the clock from mouse embryonic stem cells (ESCs). Using these model ESCs, 484 genes are identified by global gene expression analysis as correlating factors with differentiation-coupled circadian clock development. Among them, we find the misregulation of Kpna2 (Importin-alpha2) during the differentiation of the c-Myc over-expressed and Dnmt1-/- ESCs, in which sustaining cytoplasmic accumulation of PER proteins is observed. Moreover, constitutive expression of Kpna2 during the differentiation culture of ESCs significantly impairs clock development and KPNA2 facilitates cytoplasmic localization of PER1/2. These results suggest that the programmed gene expression network regulates the differentiation-coupled circadian clock development in mammalian cells, at least in part via post-transcriptional regulation of clock proteins.
Project description:Transcriptional Program of Kpna2 (Importin-alpha2) Regulates Cellular Differentiation-Coupled Circadian Clock Development in Mammalian Cells
Project description:Karyopherin α 2 (KPNA2, importin α1) is involved in the nuclear import of proteins and participates in cellular processes and accumulates in the nucleus under cellular stresses including hydrogen peroxide-indeced oxidative stress via unknown mechanisms. We performed the immunoprecipitation assay and SILAC-based quantitative proteomic analysis in HeLa cells to reveal that hydrogen peroxide decreased the phosphorylation of KPNA2 at serine 62 (S62) and increased its interaction with nucleophosmin 1 (NPM1). Specifically, a reduction in phosphorylated S62 on KPNA2 was observed in the cytoplasmic fraction, but this phosphorylated KPNA2 was not detected in the nuclear fraction. We also identified fifty-four KPNA2-interacting proteins in the nuclear fraction. Among them, NPM1, RPLP0, and MYH9 interacted with KPNA2 in cells exposed to hydrogen peroxide but not in unstressed control cells. Furthermore, the subcellular fractionation, immunoprecipitation, western blotting, immunofluorescence assay, and qRT-PCR analyses were used to support a novel finding that S62 phosphorylation maintains KPNA2 in the cytoplasm, and hydrogen peroxide reduces the phosphorylation of KPNA2 S62 to promote KPNA2-NPM1 complex nuclear entry for gene regulation.
Project description:Mammalian circadian rhythms are based on coupled transcriptional-translational feedback loops driven by the transcription factors CLOCK and BMAL1. Chromatin remodeling mechanisms are essential for the proper timing and extent of circadian gene expression. We report that the S-adenosylhomocysteine (SAH) hydrolysing enzyme AHCY binds to CLOCK-BMAL1 at chromatin and drives circadian transcription by promoting cyclic H3K4 trimethylation and recruitment of BMAL1 to chromatin.
Project description:Mammalian circadian rhythms are based on coupled transcriptional-translational feedback loops driven by the transcription factors CLOCK and BMAL1. Chromatin remodeling mechanisms are essential for the proper timing and extent of circadian gene expression. We report that the S-adenosylhomocysteine (SAH) hydrolysing enzyme AHCY binds to CLOCK-BMAL1 at chromatin and drives circadian transcription by promoting cyclic H3K4 trimethylation and recruitment of BMAL1 to chromatin.
Project description:We show that the cyclin-dependent kinase 5 (CDK5) regulates the mammalian circadian clock via phosphorylation of PER2. CDK5 phosphorylated PER2 at serine residue 394 (S394) as shown by an in vitro kinase assay.
Project description:The circadian clock regulates metabolism and other critical cellular functions. We used CRISPR-Cas9 to knockout the core clock gene Arntl in KPC cells
Project description:The circadian clock, which regulates cellular physiology, such as energy metabolism, resides in each cell level throughout the body. Recently, it has been elucidated that the cellular circadian clock is closely linked with cellular differentiation. Moreover, the misregulation of cellular differentiation in mouse embryonic stem cells (ESCs) induced abnormally differentiated cells with impaired circadian clock oscillation, concomitant with the post-transcriptional suppression of CLOCK proteins. Here, we show that the circadian molecular oscillation is disrupted in dysdifferentiation-mediated mouse kidney tumors induced by partial in vivo reprogramming, resembling Wilms tumors. The expression of CLOCK protein was dramatically reduced in the tumor cells despite the Clock mRNA expression. We also showed that a similar loss of CLOCK was observed in human Wilms tumors, suggesting that the circadian molecular clockwork may be disrupted in dysdifferentiation-mediated embryonal tumors such as Wilms tumors, similar to the in vivo reprogramming induced mouse kidney tumors. These results support our previous reports and may provide a novel viewpoint for understanding the pathophysiological nature of cancers through the correlation between cellular differentiation and circadian clock.
Project description:The intestinal microbiota has been identified as an environmental factor that markedly impacts energy storage and body fat accumulation, yet the underlying mechanisms remain unclear. Here we show that the microbiota regulates body composition through the circadian transcription factor NFIL3. Nfil3 transcription oscillates diurnally in intestinal epithelial cells and the amplitude of the circadian oscillation is controlled by the microbiota through type 3 innate lymphoid cells (ILC3), STAT3, and the epithelial cell circadian clock. NFIL3 controls expression of a circadian lipid metabolic program and regulates lipid absorption and export in intestinal epithelial cells. These findings provide mechanistic insight into how the intestinal microbiota regulates body composition and establish NFIL3 as an essential molecular link among the microbiota, the circadian clock, and host metabolism.