Project description:The objectives of this study were to establish a microbiome profile for oral epithelial dysplasia using archival lesion swab samples to characterize the community variations and the functional potential of the microbiome using 16S rRNA gene sequencing
Project description:In this paper, we first report that EC smoking significantly increases the odds of gingival inflammation. Then, we seek to identify and explain the mechanism that underlies the relationship between EC smoking and gingival inflammation via the oral microbiome. We performed mediation analyses to assess if EC smoking affects the oral microbiome, which in turn affects gingival inflammation. For this, we collected saliva and subgingival samples from EC users and non-users and profiled their microbial compositions via 16S rRNA amplicon sequencing. We then performed α-diversity, β-diversity, and taxonomic differential analyses to survey the disparity in microbial composition between EC users and non-users. We found significant increases in α-diversity in EC users and disparities in β-diversity between EC users and non-users.
Project description:Collectively, viruses are the principal cause of cancers arising in patients with immune dysfunction, including HIV+ patients. Kaposi’s Sarcoma (KS) etiologically linked to KSHV continues to be the most common AIDS-associated tumor. The involvement of oral cavity represents one of the most common clinical manifestations of this tumor. HIV infection incurs an increased risk for periodontal diseases and oral carriage from a variety of pathogenic bacteria. In the current study, by using 16S rRNA based pyrosequencing, we found that oral shedding of KSHV altered oral microbiota signature in HIV+ patients which may contribute to virus-associated malignancies development.
Project description:To determine microbiota composition associated with loss of KDM5 in intestine, we carried out 16S rRNA seq analyses of dissected intestine from wildtype and kdm5 mutant. [GSM2628181-GSM2628190]. A total of 78 operational taxonomic units (OTUs) were identified in the sequence data. There were about 15 genera much less abundant in kdm5 mutant compared to wildtype. The kdm5 mutant were sensitive to pathogen. To confirm the microbiota associated with loss of KDM5 in intestine, 16S rRNA of new flies were sequenced and analyzed by Majorbio Bio-Pharm Technology Co. Ltd. (Shanghai, China) [GSM3243472-GSM3243481]. A total of 107 operational taxonomic units (OTUs) were identified in the sequence data. There were about 20 genera much less abundant in kdm5 mutant compared to wildtype. To confirm the microbiota associated with loss of KDM5 drosophila feeding with Lactobacillus plantarum, 16S rRNA of kdm5 mutant flies were sequenced and analyzed by Novogene Bioinformatics Technology Co., Ltd. (Tianjin, China) [GSM3263522-GSM3263527]. A total of 92 operational taxonomic units (OTUs) were identified in the sequence data. To confirm the microbiota associated with KDM5 knockdown in intestine, 16S rRNA of Myo1A-Gal4TS/+ and Myo1A-Gal4TS/+;+/kdm5RNAi flies were sequenced and analyzed by Biomarker Co. Ltd. (Beijing, China). [GSM3507915-GSM3507924]. A total of 50 operational taxonomic units (OTUs) were identified in the sequence data. There was a significant different based on the genus level between two groups.
Project description:To investigate the factors affecting the composition of the oral microbiome of Agta hunter-gatherers from the Philippines, we sequenced the 16S rRNA region from saliva samples from the Agta population (hunter-gatherers from Philippines) together with BaYaka (hunter-gatherers from Congo) and Palanan farmers (neighboring population of the Agta).
Project description:Mechanisms by which Porphyromonas gingivalis (P. gingivalis) infection enhances oral tumor growth or resistance to cell death remain elusive. Here, we determined that P. gingivalis infection mediates therapeutic resistance via inhibiting lethal mitophagy in cancer cells and tumors. Mechanistically, P. gingivalis targets the LC3B-ceramide complex by associating with LC3B via bacterial major fimbriae (FimA) protein, preventing ceramide-dependent mitophagy in response to various therapeutic agents. Moreover, ceramide-mediated mitophagy is induced by Annexin A2 (ANXA2)-ceramide association, involving the E142 residue of ANXA2. Inhibition of ANXA2-ceramide-LC3B complex formation by wild-type P. gingivalis prevented ceramide-dependent mitophagy. Moreover, a FimA-deletion mutant P. gingivalis variant had no inhibitory effects on ceramide-dependent mitophagy. Further, 16S rRNA sequencing of oral tumors indicated that P. gingivalis infection altered the microbiome of the tumor macroenvironment in response to ceramide analog treatment in mice. Thus, these data provide a mechanism describing the pro-survival roles of P. gingivalis in oral tumors.
Project description:Primary outcome(s): Analysis of the diversity and composition of the gut microbiome by 16S rRNA sequencing
Study Design: Observational Study Model : Others, Time Perspective : Prospective, Enrollment : 60, Biospecimen Retention : Collect & Archive- Sample with DNA, Biospecimen Description : Blood, Stool
Project description:<p><strong>BACKGROUND:</strong> Drug addiction can seriously damage human physical and mental health, while detoxification is a long and difficult process. Although studies have reported changes in the oral microbiome of methamphetamine (METH) addicts, the role of the microbiome plays in this process is still unknown. This study aims to explore the function of the microbiome based on analysis of the variations in the oral microbiome and metabolome of METH addicts. We performed the 16S rRNA sequencing analysis based on the oral saliva samples collected from 278 METH addicts and 105 healthy controls (CTL) undergoing detoxification at the detoxification center in Shandong, China. In addition, the untargeted metabolomic profiling was conducted based on 220 samples (170 METH addicts and 50 CTL) to identify the biomarkers and build classifiers for both oral microbiota and metabolites.</p><p><strong>RESULTS:</strong> Compared to the CTL group, alpha diversity was reduced in the group of METH addicts, with significant differences in the microbiota and changes in oral metabolic pathways, including enhanced tryptophan metabolism, lysine biosynthesis, purine metabolism and steroid biosynthesis. Conversely, the metabolic pathways of porphyrin metabolism, glutathione metabolism and pentose phosphate were significantly reduced. It was speculated that four key microbial taxa, i.e., <em>Peptostreptococcus</em>, <em>Gemella</em>, <em>Campylobacter</em> and <em>Aggregatibacter</em>, could be involved in the toxicity and addiction mechanisms of METH by affecting the above metabolic pathways. And, it was found that with the increase of drug use years, the content of tryptamine associated with neuropsychiatric disorders gradually increased. In addition, microbial prediction models were more effective than metabolite-based prediction models in identifying METH addiction.</p><p><strong>CONCLUSIONS:</strong> Our study identified the potential functional connections between the oral microbiome and metabolic profile of METH addicts, providing novel insights into exploring the toxic damage and addiction mechanisms underlying the METH addiction.</p>
Project description:The impact of mono-chronic S. stercoralis infection on the gut microbiome and microbial activities in infected participants was explored. The 16S rRNA gene sequencing of a longitudinal study with 2 sets of human fecal was investigated. Set A, 42 samples were matched, and divided equally into positive (Pos) and negative (Neg) for S. stercoralis diagnoses. Set B, 20 samples of the same participant in before (Ss+PreT) and after (Ss+PostT) treatment was subjected for 16S rRNA sequences and LC-MS/MS to explore the effect of anti-helminthic treatment on microbiome proteomes.