Project description:High-grade serous ovarian cancer is the most aggressive histological type of epithelial ovarian cancer, which is characterized by a high frequency of somatic TP53 mutations. To provide a better understanding of the molecular mechanisms involved in the pathogenesis of these cancers and to develop a risk classification system, we conducted profiling of the copy number alterations present in these tumors. Thirty patients who were diagnosed as high-grade serous ovarian cancer were recruited in this study. Affymetrix SNP array were performed according to the manufacturer's directions on DNA extracted from high-grade serous ovarian cancer tissues or peripheral blood samples. The Japanese Serous Ovarian Cancer Study Group
Project description:The JGOG3025 study was conducted by the Japanese Gynecologic Oncology Group (JGOG) on 710 patients with epithelial ovarian cancer (NCT03159572). In the JGOG3025-TR2 study, fresh frozen tumor tissues from 274 and 15 cases diagnosed as stage II or higher high-grade serous carcinoma (HGSC) or high-grade endometrioid carcinoma (HGEC) in the central pathological review were submitted to SNP array, total RNA-sequencing, and DNA methylation array analyses.
Project description:The JGOG3025 study was conducted by the Japanese Gynecologic Oncology Group (JGOG) on 710 patients with epithelial ovarian cancer (NCT03159572). In the JGOG3025-TR2 study, fresh frozen tumor tissues from 274 and 15 cases diagnosed as stage II or higher high-grade serous carcinoma (HGSC) or high-grade endometrioid carcinoma (HGEC) in the central pathological review were submitted to SNP array, total RNA-sequencing, and DNA methylation array analyses.
Project description:The JGOG3025 study was conducted by the Japanese Gynecologic Oncology Group (JGOG) on 710 patients with epithelial ovarian cancer (NCT03159572). In the JGOG3025-TR2 study, fresh frozen tumor tissues from 274 and 15 cases diagnosed as stage II or higher high-grade serous carcinoma (HGSC) or high-grade endometrioid carcinoma (HGEC) in the central pathological review were submitted to SNP array, total RNA-sequencing, and DNA methylation array analyses.
Project description:Profiling of loss of heterozygosity (LOH) in HGSC, subcrouping HGSC by LOH-based clustering and comparing to the LOH profiles of triple-negative breast cancer [previously submitted; GSE19594]. Study for the correlation of LOH burdern and LOH-based subgroups to clinical response to platinum-based chemotherapy in patients suffered from HGSC. SNP data (Affymetrix GenChip 250K SNP Nsp) from 47 high grade serous ovarian cancer were generated and used for LOH and copy number analysis, LOH-based hierarchical clustering to subclassify HGSC, and comparison to the chromosomal alterations in high grade brest cancer. The associstion between LOH-based subgroups and LOH burden and clinical resposne to platinum-based chemotherapy was investigated. The results were validated in two independent public opening datasets.
Project description:Ovarian cancer is the most lethal gynecologic cancer. High-grade serous ovarian carcinoma (HGSOC) is the most common histologic subtype, accounting for three quarters of ovarian cancer. To clarify the changes of gene expression in serous ovarian cancer, we performed lncRNA and mRNA microarrays to identify differentially expressed lncRNAs and mRNAs in High-grade and Low-grade serous ovarian carcinoma compared with Normal fallopian tube.
Project description:Low-grade serous ovarian carcinoma is believed to arise from serous borderline ovarian tumors, yet the progression from serous borderline tumors to low-grade serous ovarian carcinoma remains poorly understood. The purpose of this study was to identify differentially expressed genes between the two groups. Expression profiles were generated from 6 human ovarian surface epithelia (HOSE), 8 serous borderline ovarian tumors (SBOT), 13 low-grade serous ovarian carcinomas (LG), and 22 high-grade serous ovarian carcinomas (HG). The anterior gradient homolog 3 (AGR3) gene was found to be highly upregulated in serous borderline ovarian tumors; this finding was validated by real-time quantitative RT-PCR, Western blotting, and immunohistochemistry. Anti-AGR3 immunohistochemistry was performed on an additional 56 LG and 103 HG tissues and the results were correlated with clinical data. Expression profiling determined that 1254 genes were differentially expressed (P < 0.005) between SBOT, LG and HG tumors. Serous borderline ovarian tumors exhibited robust positive staining for AGR3, with a lower percentage of tumor cells stained in LG and HG. Immunofluorescence staining indicated that AGR3 expression was limited to ciliated cells. Tumor samples with a high percentage (>10%) of AGR3 positively stained tumor cells were associated with improved longer median survival in both the LG (P = 0.013) and HG (P = 0.008) serous ovarian carcinoma groups. The progression of serous borderline ovarian tumors to low-grade serous ovarian carcinoma may involve the de-differentiation of ciliated cells. AGR3 could serve as a prognostic marker for survival in patients with low-grade and high-grade serous ovarian carcinomas. Total RNA were extracted from microdissected human ovarian surface epithelia (HOSE, n=6), and microdissected serous borderline ovarian tumors (LMP, n=8), low-grade serous ovarian carcinomas (LGOSC, n=13), and 22 high-grade serous ovarian carcinomas (HGOSC, n=22). Gene Expression profiles were then generated with commercial GeneChip Human Genome U133 Plus 2.0 Array. dChip was used to identify significant differentially expressed genes between LMP/LGOSC and HGOSC