Project description:Arabidopsis thaliana and Arabidopsis lyrata are two closely related Brassicaceae species, which are used as models for plant comparative biology. They differ by lifestyle, predominant mating strategy, ecological niches and genome organization. In order to explore molecular basis of specific traits, we performed RNA-sequencing of vegetative rosettes from both species. Additionally, we sequenced apical meristems and inflorescences of A. lyrata that allow for intra-specific transcriptome comparison in several major developmental stages. Please view also related dataset GSE69077 (RNA-sequencing of heat stressed A. lyrata and A. thaliana plants).
Project description:Arabidopsis thaliana and Arabidopsis lyrata are two closely related Brassicaceae species, which are used as models for plant comparative biology. They differ by lifestyle, predominant mating strategy, ecological niches and genome organization. In order to explore molecular basis of specific traits, we performed RNA-sequencing of vegetative rosettes from both species. Additionally, we sequenced apical meristems and inflorescences of A. lyrata that allow for intra-specific transcriptome comparison in several major developmental stages. Arabidopsis lyrata and Arabidopsis thaliana aerial tissues were collected from mock treated plants, total RNA isolated and poly-A RNA populations sequenced
Project description:Ecotype-specific differences in genome methylation were assayed in Arabidopsis Col and Ler variations using genomic tiling microarrays. Comparative genome hybridization was also performed so that the contribution of ecotype-specific amplifications and deletions could be estimated and integrated into the analysis of differential DNA methylation. Keywords: methylation analysis and comparative genome hybridization
Project description:Arabidopsis thaliana and Arabidopsis lyrata are two closely related Brassicaceae species, which are used as models for plant comparative biology. They differ by lifestyle, predominant mating strategy, ecological niches and genome organization. To identify heat stress induced genes, we performed RNA-sequencing of rosette leaves from mock-treated, heat-stressed and heat-stressed-recoved plants of both species.