Project description:Type I interferons were discovered as the primary antiviral cytokines and are now known to serve critical functions in host defense against bacterial pathogens. Accordingly, established mediators of interferon antiviral activity may mediate previously unrecognized antibacterial functions. RNase-L is the terminal component of an RNA decay pathway that is an important mediator of interferon-induced antiviral activity. Here we identify a novel role for RNase-L in the host antibacterial response. RNase-L-/- mice exhibited a dramatic increase in mortality following challenge with Bacillus anthracis and Escherichia coli; this increased susceptibility was due to a compromised immune response resulting in increased bacterial load. Investigation of the mechanisms of RNase-L antibacterial activity indicated that RNase-L is required for the optimal induction of proinflammatory cytokines that play essential roles in host defense from bacterial pathogens. RNase-L also regulated the expression of the endolysosomal protease, cathepsin-E, and endosome-associated activities, that function to eliminate internalized bacteria and may contribute to RNase-L antimicrobial action. Our results reveal a unique role for RNase-L in the antibacterial response that is mediated through multiple mechanisms. As a regulator of fundamental components of the innate immune response, RNase-L represents a viable therapeutic target to augment host defense against diverse microbial pathogens. two strains: wildtype and knockout, three time points: untreated, 2hours, and 8hours. three replication for each group. Totally 18 samples.
Project description:U3A cells stably expressing wild-type STAT1 or STAT1-CC were treated with interferon beta (10U/ml) or control for 24 hours to assess effects of stat1 modifications, interferon, and the interaction on gene expression. Keywords: interferon, STAT1, STAT1-CC, STAT1CC, STAT-1C, antiviral RNA was isolated from stable U3A-STAT1 lines stably expressing wild-type STAT1 or STAT1CC, after 24 hour treatment with interferon beta (10U/ml) or control.
Project description:Transcriptional gene silencing (TGS) can serve as an innate immunity against invading DNA viruses throughout Eukaryotes. Geminivirus code for TrAP protein to suppress the TGS pathway. Here we identified an Arabidopsis H3K9me2 histone methyltransferase, Su(var)3-9 homolog 4 (SUVH4/KYP), as a bona fide cellular target of TrAP. TrAP interacts with the catalytic domain of KYP and inhibits its activity in vitro. TrAP elicits developmental anomalies phenocopying several TGS mutants, reduces the repressive H3K9me2 mark and CHH DNA methylation, and reactivates numerous endogenous KYP-repressed loci in vivo. Moreover, KYP binds to the viral chromatin, and controls its methylation to combat virus infection. Notably, kyp mutants support systemic infection of TrAP-deficient Geminivirus. We conclude that TrAP attenuates the TGS of the viral chromatin by inhibiting KYP activity to evade host surveillance. These findings provide new insight on the molecular arms race between host antiviral defense and virus counter defense at an epigenetic level.
Project description:U3A cells stably expressing wild-type STAT1 or STAT1-CC were treated with interferon beta (10U/ml) or control for 24 hours to assess effects of stat1 modifications, interferon, and the interaction on gene expression. Keywords: interferon, STAT1, STAT1-CC, STAT1CC, STAT-1C, antiviral
Project description:Vertebrate genomes exhibit marked CG-suppression, that is lower than expected numbers of 5’-CG-3’ dinucleotides1. This feature is likely due to C-to-T mutations that have accumulated over hundreds of millions of years, driven by CG-specific DNA methyl transferases and spontaneous methyl-cytosine deamination. Remarkably, many RNA viruses of vertebrates that are not substrates for DNA methyl transferases mimic the CG-suppression of their hosts2-4. This striking property of viral genomes is unexplained4-6. In a synonymous mutagenesis experiment, we found that CG-suppression is essential for HIV-1 replication. The deleterious effect of CG dinucleotides on HIV-1 replication was cumulative, evident as cytoplasmic RNA depletion, and exerted by CG dinucleotides in both translated and non-translated exonic RNA sequences. A focused siRNA screen revealed that zinc finger antiviral protein (ZAP)7 inhibited virion production by cells infected with CG-enriched HIV-1. Crucially, HIV-1 mutants containing segments whose CG-content mimicked random sequence were defective in unmanipulated cells, but replicated normally in ZAP-deficient cells. Crosslinking-immunoprecipitation-sequencing assays demonstrated that ZAP binds directly and selectively to RNA sequences containing CG dinucleotides. These findings suggest that ZAP exploits host CG-suppression to discriminate non-self RNA. The dinucleotide composition of HIV-1, and perhaps other RNA viruses, appears to have adapted to evade this host defense.
Project description:Immune cells regulate a hypertonic microenvironment in the skin; however, possible functions of increased skin Na+ concentrations are unknown. We found that Na+ accumulated at the site of bacterial skin infections in humans and in mice. We used the protozoan parasite Leishmania (L.) major as a model of skin-prone macrophage infection to test the hypothesis that skin-Na+ storage facilitates antimicrobial host defense. Activation of macrophages in the presence of high NaCl concentrations modified epigenetic markers and enhanced p38 mitogen-activated protein kinase (p38/MAPK)-dependent nuclear factor of activated T cells 5 (NFAT5) activation. This high-salt response resulted in elevated type-2 nitric oxide synthase (Nos2)-dependent NO production and improved L. major elimination. Finally, we found that increasing Na+ content in the skin by a high-salt diet boosted activation of macrophages in an Nfat5-dependent manner and promoted cutaneous antimicrobial defense. We suggest that the hypertonic microenvironment could serve as a barrier to infection.
Project description:Type I interferons were discovered as the primary antiviral cytokines and are now known to serve critical functions in host defense against bacterial pathogens. Accordingly, established mediators of interferon antiviral activity may mediate previously unrecognized antibacterial functions. RNase-L is the terminal component of an RNA decay pathway that is an important mediator of interferon-induced antiviral activity. Here we identify a novel role for RNase-L in the host antibacterial response. RNase-L-/- mice exhibited a dramatic increase in mortality following challenge with Bacillus anthracis and Escherichia coli; this increased susceptibility was due to a compromised immune response resulting in increased bacterial load. Investigation of the mechanisms of RNase-L antibacterial activity indicated that RNase-L is required for the optimal induction of proinflammatory cytokines that play essential roles in host defense from bacterial pathogens. RNase-L also regulated the expression of the endolysosomal protease, cathepsin-E, and endosome-associated activities, that function to eliminate internalized bacteria and may contribute to RNase-L antimicrobial action. Our results reveal a unique role for RNase-L in the antibacterial response that is mediated through multiple mechanisms. As a regulator of fundamental components of the innate immune response, RNase-L represents a viable therapeutic target to augment host defense against diverse microbial pathogens.
Project description:RNA interference (RNAi) functions as the major host antiviral defense in insects, while less is understood about how to utilize antiviral RNAi in controlling viral infection in insects. Enoxacin belongs to the family of synthetic antibacterial compounds based on a fluoroquinolone skeleton that has been previously found to enhance RNAi in mammalian cells. In this study, we showed that enoxacin efficiently inhibited viral replication of Drosophila C virus (DCV) and Cricket paralysis virus (CrPV) in cultured Drosophila cells. Enoxacin promoted the loading of Dicer-2-processed virus-derived siRNA into the RNA-induced silencing complex, thereby enhancing antiviral RNAi response in infected cells. Moreover, enoxacin treatment elicited an RNAi-dependent in vivo protective efficacy against DCV or CrPV challenge in adult fruit flies. In addition, enoxacin also inhibited replication of flaviviruses, including Dengue virus and Zika virus, in Aedes mosquito cells in an RNAi-dependent manner. Together, our findings demonstrated that enoxacin can enhance RNAi in insects, and enhancing RNAi by enoxacin is an effective antiviral strategy against diverse viruses in insects, which may be exploited as a broad-spectrum antiviral agent to control vector transmission of arboviruses or viral diseases in insect farming.